Initial commit

This commit is contained in:
Timothy Kassis
2025-10-19 14:01:29 -07:00
parent d85386c32b
commit 152d0d54de
15 changed files with 4569 additions and 0 deletions

View File

@@ -0,0 +1,205 @@
#!/usr/bin/env python3
"""
Compare GRNBoost2 and GENIE3 algorithms on the same dataset.
This script runs both algorithms on the same expression data and compares:
- Runtime
- Number of predicted links
- Top predicted relationships
- Overlap between predictions
Usage:
python compare_algorithms.py <expression_file> [options]
Example:
python compare_algorithms.py expression_data.tsv -t tf_names.txt
"""
import argparse
import time
import pandas as pd
from arboreto.algo import grnboost2, genie3
from arboreto.utils import load_tf_names
def compare_networks(network1, network2, name1, name2, top_n=100):
"""Compare two inferred networks."""
print(f"\n{'='*60}")
print("Network Comparison")
print(f"{'='*60}")
# Basic statistics
print(f"\n{name1} Statistics:")
print(f" Total links: {len(network1)}")
print(f" Unique TFs: {network1['TF'].nunique()}")
print(f" Unique targets: {network1['target'].nunique()}")
print(f" Importance range: [{network1['importance'].min():.3f}, {network1['importance'].max():.3f}]")
print(f"\n{name2} Statistics:")
print(f" Total links: {len(network2)}")
print(f" Unique TFs: {network2['TF'].nunique()}")
print(f" Unique targets: {network2['target'].nunique()}")
print(f" Importance range: [{network2['importance'].min():.3f}, {network2['importance'].max():.3f}]")
# Compare top predictions
print(f"\nTop {top_n} Predictions Overlap:")
# Create edge sets for top N predictions
top_edges1 = set(
zip(network1.head(top_n)['TF'], network1.head(top_n)['target'])
)
top_edges2 = set(
zip(network2.head(top_n)['TF'], network2.head(top_n)['target'])
)
# Calculate overlap
overlap = top_edges1 & top_edges2
only_net1 = top_edges1 - top_edges2
only_net2 = top_edges2 - top_edges1
overlap_pct = (len(overlap) / top_n) * 100
print(f" Shared edges: {len(overlap)} ({overlap_pct:.1f}%)")
print(f" Only in {name1}: {len(only_net1)}")
print(f" Only in {name2}: {len(only_net2)}")
# Show some example overlapping edges
if overlap:
print(f"\nExample overlapping predictions:")
for i, (tf, target) in enumerate(list(overlap)[:5], 1):
print(f" {i}. {tf} -> {target}")
def main():
parser = argparse.ArgumentParser(
description='Compare GRNBoost2 and GENIE3 algorithms'
)
parser.add_argument(
'expression_file',
help='Path to expression data file (TSV/CSV format)'
)
parser.add_argument(
'-t', '--tf-file',
help='Path to file containing transcription factor names (one per line)',
default=None
)
parser.add_argument(
'--grnboost2-output',
help='Output file path for GRNBoost2 results',
default='grnboost2_network.tsv'
)
parser.add_argument(
'--genie3-output',
help='Output file path for GENIE3 results',
default='genie3_network.tsv'
)
parser.add_argument(
'-s', '--seed',
type=int,
help='Random seed for reproducibility',
default=42
)
parser.add_argument(
'--sep',
help='Separator for input file (default: tab)',
default='\t'
)
parser.add_argument(
'--transpose',
action='store_true',
help='Transpose the expression matrix (use if genes are rows)'
)
parser.add_argument(
'--top-n',
type=int,
help='Number of top predictions to compare (default: 100)',
default=100
)
args = parser.parse_args()
# Load expression data
print(f"Loading expression data from {args.expression_file}...")
expression_data = pd.read_csv(args.expression_file, sep=args.sep, index_col=0)
# Transpose if needed
if args.transpose:
print("Transposing expression matrix...")
expression_data = expression_data.T
print(f"Expression data shape: {expression_data.shape}")
print(f" Observations (rows): {expression_data.shape[0]}")
print(f" Genes (columns): {expression_data.shape[1]}")
# Load TF names if provided
tf_names = None
if args.tf_file:
print(f"Loading transcription factor names from {args.tf_file}...")
tf_names = load_tf_names(args.tf_file)
print(f" Found {len(tf_names)} transcription factors")
else:
print("No TF file provided. Using all genes as potential regulators.")
# Run GRNBoost2
print("\n" + "="*60)
print("Running GRNBoost2...")
print("="*60)
start_time = time.time()
grnboost2_network = grnboost2(
expression_data=expression_data,
tf_names=tf_names,
seed=args.seed
)
grnboost2_time = time.time() - start_time
print(f"GRNBoost2 completed in {grnboost2_time:.2f} seconds")
# Save GRNBoost2 results
grnboost2_network.to_csv(args.grnboost2_output, sep='\t', index=False)
print(f"Results saved to {args.grnboost2_output}")
# Run GENIE3
print("\n" + "="*60)
print("Running GENIE3...")
print("="*60)
start_time = time.time()
genie3_network = genie3(
expression_data=expression_data,
tf_names=tf_names,
seed=args.seed
)
genie3_time = time.time() - start_time
print(f"GENIE3 completed in {genie3_time:.2f} seconds")
# Save GENIE3 results
genie3_network.to_csv(args.genie3_output, sep='\t', index=False)
print(f"Results saved to {args.genie3_output}")
# Compare runtimes
print("\n" + "="*60)
print("Runtime Comparison")
print("="*60)
print(f"GRNBoost2: {grnboost2_time:.2f} seconds")
print(f"GENIE3: {genie3_time:.2f} seconds")
speedup = genie3_time / grnboost2_time
print(f"Speedup: {speedup:.2f}x (GRNBoost2 is {speedup:.2f}x faster)")
# Compare networks
compare_networks(
grnboost2_network,
genie3_network,
"GRNBoost2",
"GENIE3",
top_n=args.top_n
)
print("\n" + "="*60)
print("Comparison complete!")
print("="*60)
if __name__ == '__main__':
main()