diff --git a/docs/examples.md b/docs/examples.md index 8ef53e0..8486c09 100644 --- a/docs/examples.md +++ b/docs/examples.md @@ -26,6 +26,9 @@ This document provides comprehensive, practical examples demonstrating how to co 18. [Experimental Physics & Data Analysis](#experimental-physics--data-analysis) 19. [Chemical Engineering & Process Optimization](#chemical-engineering--process-optimization) 20. [Scientific Illustration & Visual Communication](#scientific-illustration--visual-communication) +21. [Quantum Computing for Chemistry](#quantum-computing-for-chemistry) +22. [Research Grant Writing](#research-grant-writing) +23. [Flow Cytometry & Immunophenotyping](#flow-cytometry--immunophenotyping) --- @@ -40,12 +43,16 @@ This document provides comprehensive, practical examples demonstrating how to co - `pubchem-database` - Search compound libraries - `rdkit` - Analyze molecular properties - `datamol` - Generate analogs +- `medchem` - Medicinal chemistry filters +- `molfeat` - Molecular featurization - `diffdock` - Molecular docking - `alphafold-database` - Retrieve protein structure - `pubmed-database` - Literature review - `cosmic-database` - Query mutations - `deepchem` - Property prediction +- `torchdrug` - Graph neural networks for molecules - `scientific-visualization` - Create figures +- `clinical-reports` - Generate PDF reports **Workflow**: @@ -135,7 +142,10 @@ Expected Output: - `clinicaltrials-database` - Check ongoing trials - `fda-database` - Drug approvals and safety - `networkx` - Network analysis +- `bioservices` - Biological database queries - `literature-review` - Systematic review +- `openalex-database` - Academic literature search +- `biorxiv-database` - Preprint search **Workflow**: @@ -213,15 +223,17 @@ Expected Output: **Skills Used**: - `pysam` - Parse VCF files - `ensembl-database` - Variant annotation +- `gget` - Unified gene/protein data retrieval - `clinvar-database` - Clinical significance - `cosmic-database` - Somatic mutations - `gene-database` - Gene information - `uniprot-database` - Protein impact +- `clinpgx-database` - Pharmacogenomics data - `drugbank-database` - Drug-gene associations - `clinicaltrials-database` - Matching trials - `opentargets-database` - Target validation - `pubmed-database` - Literature evidence -- `reportlab` - Generate clinical report +- `clinical-reports` - Generate clinical report PDF **Workflow**: @@ -297,7 +309,7 @@ Step 12: Generate clinical genomics report - Clinical trial options with eligibility information - Prognostic implications based on mutation profile - References to guidelines (NCCN, ESMO, AMP/ASCO/CAP) -- Generate professional PDF using ReportLab +- Generate professional PDF using clinical-reports skill Expected Output: - Annotated variant list with clinical significance @@ -318,11 +330,14 @@ Expected Output: - `scanpy` - Clustering and visualization - `scikit-learn` - Machine learning classification - `gene-database` - Gene annotation +- `gget` - Gene data retrieval - `reactome-database` - Pathway analysis - `opentargets-database` - Drug targets - `pubmed-database` - Literature validation - `matplotlib` - Visualization - `seaborn` - Heatmaps +- `plotly` - Interactive visualization +- `scikit-survival` - Survival analysis **Workflow**: @@ -412,11 +427,14 @@ Expected Output: - `scvi-tools` - Batch correction and integration - `cellxgene-census` - Reference data - `gene-database` - Cell type markers +- `gget` - Gene data retrieval - `anndata` - Data structure - `arboreto` - Gene regulatory networks - `pytorch-lightning` - Deep learning - `matplotlib` - Visualization +- `plotly` - Interactive visualization - `statistical-analysis` - Hypothesis testing +- `geniml` - Genomic ML embeddings **Workflow**: @@ -526,12 +544,14 @@ Expected Output: - `pdb-database` - Experimental structures - `uniprot-database` - Protein information - `biopython` - Structure analysis -- `pyrosetta` - Protein design (if available) +- `esm` - Protein language models and embeddings - `rdkit` - Chemical library generation +- `datamol` - Molecule manipulation - `diffdock` - Molecular docking - `zinc-database` - Screening library - `deepchem` - Property prediction -- `pymol` - Visualization (external) +- `scientific-visualization` - Structure visualization +- `medchem` - Medicinal chemistry filters **Workflow**: @@ -638,7 +658,9 @@ Expected Output: **Skills Used**: - `rdkit` - Molecular descriptors +- `medchem` - Toxicophore detection - `deepchem` - Toxicity prediction +- `pytdc` - Therapeutics data commons - `chembl-database` - Toxicity data - `pubchem-database` - Bioassay data - `drugbank-database` - Known drug toxicities @@ -646,6 +668,7 @@ Expected Output: - `hmdb-database` - Metabolite prediction - `scikit-learn` - Classification models - `shap` - Model interpretability +- `clinical-reports` - Safety assessment reports **Workflow**: @@ -769,12 +792,15 @@ Expected Output: - `clinicaltrials-database` - Trial registry - `fda-database` - Drug approvals - `pubmed-database` - Published results +- `openalex-database` - Academic literature - `drugbank-database` - Approved drugs - `opentargets-database` - Target validation - `polars` - Data manipulation - `matplotlib` - Visualization - `seaborn` - Statistical plots -- `reportlab` - Report generation +- `plotly` - Interactive plots +- `clinical-reports` - Report generation +- `market-research-reports` - Competitive intelligence **Workflow**: @@ -872,7 +898,7 @@ Step 12: Generate competitive intelligence report * Differentiation strategies * Partnership opportunities * Regulatory pathway considerations -- Export as professional PDF with citations and data tables +- Export as professional PDF with citations and data tables using clinical-reports skill Expected Output: - Comprehensive trial database for indication @@ -894,14 +920,17 @@ Expected Output: **Skills Used**: - `pydeseq2` - RNA-seq analysis - `pyopenms` - Mass spectrometry +- `matchms` - Mass spectra matching - `hmdb-database` - Metabolite identification - `metabolomics-workbench-database` - Public datasets - `kegg-database` - Pathway mapping - `reactome-database` - Pathway analysis - `string-database` - Protein interactions +- `cobrapy` - Constraint-based metabolic modeling - `statsmodels` - Multi-omics correlation - `networkx` - Network analysis - `pymc` - Bayesian modeling +- `plotly` - Interactive network visualization **Workflow**: @@ -1011,15 +1040,16 @@ Expected Output: **Objective**: Discover novel solid electrolyte materials for lithium-ion batteries using computational screening. **Skills Used**: -- `pymatgen` - Materials analysis -- `matminer` - Feature engineering +- `pymatgen` - Materials analysis and feature engineering - `scikit-learn` - Machine learning - `pymoo` - Multi-objective optimization -- `ase` - Atomic simulation - `sympy` - Symbolic math - `vaex` - Large dataset handling +- `dask` - Parallel computing - `matplotlib` - Visualization +- `plotly` - Interactive visualization - `scientific-writing` - Report generation +- `scientific-visualization` - Publication figures **Workflow**: @@ -1052,8 +1082,8 @@ Step 4: Calculate material properties with Pymatgen - Ionic radii and bond lengths - Coordination environments -Step 5: Feature engineering with matminer -- Calculate compositional features: +Step 5: Feature engineering with Pymatgen +- Calculate compositional features using Pymatgen's featurizers: * Elemental property statistics (electronegativity, ionic radius) * Valence electron concentrations * Stoichiometric attributes @@ -1095,7 +1125,7 @@ Step 9: Analyze Pareto optimal materials Step 10: Validate predictions with DFT calculations - Select top 10 candidates for detailed study -- Set up DFT calculations (VASP-like, if available via ASE) +- Set up DFT calculations using Pymatgen's interface - Calculate: * Accurate formation energies * Li⁺ migration barriers (NEB calculations) @@ -1142,13 +1172,14 @@ Expected Output: **Skills Used**: - `histolab` - Whole slide image processing - `pathml` - Computational pathology -- `pytorch-lightning` - Deep learning -- `torchvision` - Image models +- `pytorch-lightning` - Deep learning and image models - `scikit-learn` - Model evaluation - `pydicom` - DICOM handling - `omero-integration` - Image management - `matplotlib` - Visualization +- `plotly` - Interactive visualization - `shap` - Model interpretability +- `clinical-reports` - Clinical validation reports **Workflow**: @@ -1264,11 +1295,14 @@ Expected Output: - `pylabrobot` - Lab automation - `opentrons-integration` - Opentrons protocol - `benchling-integration` - Sample tracking +- `labarchive-integration` - Electronic lab notebook - `protocolsio-integration` - Protocol documentation - `simpy` - Process simulation - `polars` - Data processing - `matplotlib` - Plate visualization -- `reportlab` - Report generation +- `plotly` - Interactive plate heatmaps +- `rdkit` - PAINS filtering for hits +- `clinical-reports` - Screening report generation **Workflow**: @@ -1406,11 +1440,14 @@ Expected Output: - `gwas-database` - Public GWAS data - `ensembl-database` - Plant genomics - `gene-database` - Gene annotation -- `scanpy` - Population structure (adapted for genetic data) +- `gget` - Gene data retrieval +- `scanpy` - Population structure analysis - `scikit-learn` - PCA and clustering - `statsmodels` - Association testing +- `statistical-analysis` - Hypothesis testing - `matplotlib` - Manhattan plots - `seaborn` - Visualization +- `plotly` - Interactive visualizations **Workflow**: @@ -1535,14 +1572,16 @@ Expected Output: **Skills Used**: - `neurokit2` - Neurophysiological signal processing -- `nilearn` (external) - Neuroimaging analysis +- `neuropixels-analysis` - Neural data analysis - `scikit-learn` - Classification and clustering - `networkx` - Graph theory analysis - `statsmodels` - Statistical testing +- `statistical-analysis` - Hypothesis testing - `torch_geometric` - Graph neural networks - `pymc` - Bayesian modeling - `matplotlib` - Brain visualization - `seaborn` - Connectivity matrices +- `plotly` - Interactive brain networks **Workflow**: @@ -1675,13 +1714,16 @@ Expected Output: - `biopython` - Sequence processing - `pysam` - BAM file handling - `ena-database` - Sequence data +- `geo-database` - Public datasets - `uniprot-database` - Protein annotation - `kegg-database` - Pathway analysis - `etetoolkit` - Phylogenetic trees - `scikit-bio` - Microbial ecology - `networkx` - Co-occurrence networks - `statsmodels` - Diversity statistics +- `statistical-analysis` - Hypothesis testing - `matplotlib` - Visualization +- `plotly` - Interactive plots **Workflow**: @@ -1826,7 +1868,10 @@ Expected Output: - `scikit-learn` - Resistance prediction - `networkx` - Transmission networks - `statsmodels` - Trend analysis +- `statistical-analysis` - Hypothesis testing - `matplotlib` - Epidemiological plots +- `plotly` - Interactive dashboards +- `clinical-reports` - Surveillance reports **Workflow**: @@ -1969,6 +2014,7 @@ Expected Output: - `pydeseq2` - RNA-seq DE analysis - `pysam` - Variant calling - `ensembl-database` - Gene annotation +- `gget` - Gene data retrieval - `cosmic-database` - Cancer mutations - `string-database` - Protein interactions - `reactome-database` - Pathway analysis @@ -1976,8 +2022,11 @@ Expected Output: - `scikit-learn` - Clustering and classification - `torch_geometric` - Graph neural networks - `umap-learn` - Dimensionality reduction -- `statsmodels` - Survival analysis +- `scikit-survival` - Survival analysis +- `statsmodels` - Statistical modeling - `pymoo` - Multi-objective optimization +- `pyhealth` - Healthcare ML models +- `clinical-reports` - Integrative genomics report **Workflow**: @@ -2147,7 +2196,7 @@ Expected Output: **Skills Used**: - `astropy` - Units and constants - `sympy` - Symbolic mathematics -- `scipy` - Statistical analysis +- `statistical-analysis` - Statistical analysis - `scikit-learn` - Classification - `stable-baselines3` - Reinforcement learning for optimization - `matplotlib` - Visualization @@ -2155,6 +2204,7 @@ Expected Output: - `statsmodels` - Hypothesis testing - `dask` - Large-scale data processing - `vaex` - Out-of-core dataframes +- `plotly` - Interactive visualization **Workflow**: @@ -2296,14 +2346,17 @@ Expected Output: **Skills Used**: - `sympy` - Symbolic equations and reaction kinetics -- `scipy` - Numerical integration and optimization +- `statistical-analysis` - Numerical analysis - `pymoo` - Multi-objective optimization - `simpy` - Process simulation - `pymc` - Bayesian parameter estimation - `scikit-learn` - Process modeling - `stable-baselines3` - Real-time control optimization - `matplotlib` - Process diagrams -- `reportlab` - Engineering reports +- `plotly` - Interactive process visualization +- `fluidsim` - Fluid dynamics simulation +- `scientific-writing` - Engineering reports +- `document-skills` - Technical documentation **Workflow**: @@ -2500,9 +2553,14 @@ Expected Output: **Skills Used**: - `generate-image` - AI image generation and editing - `matplotlib` - Data visualization +- `plotly` - Interactive visualization - `scientific-visualization` - Best practices +- `scientific-schematics` - Scientific diagrams - `scientific-writing` - Figure caption creation -- `reportlab` - PDF report generation +- `scientific-slides` - Presentation materials +- `latex-posters` - Conference posters +- `pptx-posters` - PowerPoint posters +- `document-skills` - PDF report generation **Workflow**: @@ -2618,7 +2676,7 @@ Step 12: Assemble final publication package - Organize all figures in publication order - Create high-resolution exports (300+ DPI for print) - Generate both RGB (web) and CMYK (print) versions -- Compile into PDF using ReportLab: +- Compile into PDF using document-skills: * Title page with graphical abstract * All figures with captions * Supplementary figures section @@ -2637,6 +2695,332 @@ Expected Output: --- +## Quantum Computing for Chemistry + +### Example 21: Variational Quantum Eigensolver for Molecular Ground States + +**Objective**: Use quantum computing to calculate molecular electronic structure and ground state energies for drug design applications. + +**Skills Used**: +- `qiskit` - IBM quantum computing framework +- `pennylane` - Quantum machine learning +- `cirq` - Google quantum circuits +- `qutip` - Quantum dynamics simulation +- `rdkit` - Molecular structure input +- `sympy` - Symbolic Hamiltonian construction +- `matplotlib` - Energy landscape visualization +- `scientific-visualization` - Publication figures +- `scientific-writing` - Quantum chemistry reports + +**Workflow**: + +```bash +Step 1: Define molecular system +- Load molecular structure with RDKit (small drug molecule) +- Extract atomic coordinates and nuclear charges +- Define basis set (STO-3G, 6-31G for small molecules) +- Calculate number of qubits needed (2 qubits per orbital) + +Step 2: Construct molecular Hamiltonian +- Use Qiskit Nature to generate fermionic Hamiltonian +- Apply Jordan-Wigner transformation to qubit Hamiltonian +- Use SymPy to symbolically verify Hamiltonian terms +- Calculate number of Pauli terms + +Step 3: Design variational ansatz with Qiskit +- Choose ansatz type: UCCSD, hardware-efficient, or custom +- Define circuit depth and entanglement structure +- Calculate circuit parameters (variational angles) +- Estimate circuit resources (gates, depth) + +Step 4: Implement VQE algorithm +- Initialize variational parameters randomly +- Define cost function: <ψ(θ)|H|ψ(θ)> +- Choose classical optimizer (COBYLA, SPSA, L-BFGS-B) +- Set convergence criteria + +Step 5: Run quantum simulation with PennyLane +- Configure quantum device (simulator or real hardware) +- Execute variational circuits +- Measure expectation values of Hamiltonian terms +- Update parameters iteratively + +Step 6: Error mitigation +- Implement readout error mitigation +- Apply zero-noise extrapolation +- Use measurement error correction +- Estimate uncertainty in energy values + +Step 7: Quantum dynamics with QuTiP +- Simulate molecular dynamics on quantum computer +- Calculate time evolution of molecular system +- Study non-adiabatic transitions +- Visualize wavefunction dynamics + +Step 8: Compare with classical methods +- Run classical HF and DFT calculations for reference +- Compare VQE results with CCSD(T) (gold standard) +- Analyze quantum advantage for this system +- Quantify accuracy vs computational cost + +Step 9: Scale to larger molecules +- Design circuits for larger drug candidates +- Estimate resources for pharmaceutical applications +- Identify molecules where quantum advantage is expected +- Plan for near-term quantum hardware capabilities + +Step 10: Generate quantum chemistry report +- Energy convergence plots +- Circuit diagrams and ansatz visualizations +- Comparison with classical methods +- Resource estimates for target molecules +- Discussion of quantum advantage timeline +- Publication-quality figures +- Export comprehensive report + +Expected Output: +- Molecular ground state energies from VQE +- Optimized variational circuits +- Comparison with classical chemistry methods +- Resource estimates for drug molecules +- Quantum chemistry analysis report +``` + +--- + +## Research Grant Writing + +### Example 22: NIH R01 Grant Proposal Development + +**Objective**: Develop a comprehensive research grant proposal with literature review, specific aims, and budget justification. + +**Skills Used**: +- `research-grants` - Grant writing templates and guidelines +- `literature-review` - Systematic literature analysis +- `pubmed-database` - Literature search +- `openalex-database` - Citation analysis +- `clinicaltrials-database` - Preliminary data context +- `hypothesis-generation` - Scientific hypothesis development +- `scientific-writing` - Technical writing +- `scientific-critical-thinking` - Research design +- `citation-management` - Reference formatting +- `document-skills` - PDF generation + +**Workflow**: + +```bash +Step 1: Define research question and significance +- Use hypothesis-generation skill to refine research questions +- Identify knowledge gaps in the field +- Articulate significance and innovation +- Define measurable outcomes + +Step 2: Comprehensive literature review +- Search PubMed for relevant publications (last 10 years) +- Query OpenAlex for citation networks +- Identify key papers and review articles +- Use literature-review skill to synthesize findings +- Identify gaps that proposal will address + +Step 3: Develop specific aims +- Aim 1: Mechanistic studies (hypothesis-driven) +- Aim 2: Translational applications +- Aim 3: Validation and clinical relevance +- Ensure aims are interdependent but not contingent +- Define success criteria for each aim + +Step 4: Design research approach +- Use scientific-critical-thinking for experimental design +- Define methods for each specific aim +- Include positive and negative controls +- Plan statistical analysis approach +- Identify potential pitfalls and alternatives + +Step 5: Preliminary data compilation +- Gather existing data supporting hypothesis +- Search ClinicalTrials.gov for relevant prior work +- Create figures showing preliminary results +- Quantify feasibility evidence + +Step 6: Innovation and significance sections +- Articulate what is novel about approach +- Compare to existing methods/knowledge +- Explain expected impact on field +- Address NIH mission alignment + +Step 7: Timeline and milestones +- Create Gantt chart for 5-year project +- Define quarterly milestones +- Identify go/no-go decision points +- Plan for personnel and resource allocation + +Step 8: Budget development +- Calculate personnel costs (PI, postdocs, students) +- Equipment and supplies estimates +- Core facility usage costs +- Travel and publication costs +- Indirect cost calculation + +Step 9: Rigor and reproducibility +- Address biological variables (sex, age, strain) +- Statistical power calculations +- Data management and sharing plan +- Authentication of key resources + +Step 10: Format and compile +- Use research-grants templates for NIH format +- Apply citation-management for references +- Create biosketch and facilities sections +- Generate PDF with proper formatting +- Check page limits and formatting requirements + +Step 11: Review and revision +- Use peer-review skill principles for self-assessment +- Check for logical flow and clarity +- Verify alignment with FOA requirements +- Ensure responsive to review criteria + +Step 12: Final deliverables +- Specific Aims page (1 page) +- Research Strategy (12 pages) +- Bibliography +- Budget and justification +- Biosketches +- Letters of support +- Data management plan +- Human subjects/vertebrate animals sections (if applicable) + +Expected Output: +- Complete NIH R01 grant proposal +- Literature review summary +- Budget spreadsheet with justification +- Timeline and milestone chart +- All required supplementary documents +- Properly formatted PDF ready for submission +``` + +--- + +## Flow Cytometry & Immunophenotyping + +### Example 23: Multi-Parameter Flow Cytometry Analysis Pipeline + +**Objective**: Analyze high-dimensional flow cytometry data to characterize immune cell populations in clinical samples. + +**Skills Used**: +- `flowio` - FCS file parsing +- `scanpy` - High-dimensional analysis +- `scikit-learn` - Clustering and classification +- `umap-learn` - Dimensionality reduction +- `statistical-analysis` - Population statistics +- `matplotlib` - Flow cytometry plots +- `plotly` - Interactive gating +- `clinical-reports` - Clinical flow reports +- `exploratory-data-analysis` - Data exploration + +**Workflow**: + +```bash +Step 1: Load and parse FCS files +- Use flowio to read FCS 3.0/3.1 files +- Extract channel names and metadata +- Load compensation matrix from file +- Parse keywords (patient ID, tube, date) + +Step 2: Quality control +- Check for acquisition anomalies (time vs events) +- Identify clogging or fluidics issues +- Remove doublets (FSC-A vs FSC-H) +- Gate viable cells (exclude debris) +- Document QC metrics per sample + +Step 3: Compensation and transformation +- Apply compensation matrix +- Transform data (biexponential/logicle) +- Verify compensation with single-stain controls +- Visualize spillover reduction + +Step 4: Traditional gating strategy +- Sequential manual gating approach: + * Lymphocytes (FSC vs SSC) + * Single cells (FSC-A vs FSC-H) + * Live cells (viability dye negative) + * CD3+ T cells, CD19+ B cells, etc. +- Calculate population frequencies +- Export gated populations + +Step 5: High-dimensional analysis with Scanpy +- Convert flow data to AnnData format +- Apply variance-stabilizing transformation +- Calculate highly variable markers +- Build neighbor graph + +Step 6: Dimensionality reduction +- Run UMAP with umap-learn for visualization +- Optimize UMAP parameters (n_neighbors, min_dist) +- Create 2D embeddings colored by: + * Marker expression + * Sample/patient + * Clinical group + +Step 7: Automated clustering +- Apply Leiden or FlowSOM clustering +- Determine optimal cluster resolution +- Assign cell type labels based on marker profiles +- Validate clusters against manual gating + +Step 8: Differential abundance analysis +- Compare population frequencies between groups +- Use statistical-analysis for hypothesis testing +- Calculate fold changes and p-values +- Apply multiple testing correction +- Identify significantly altered populations + +Step 9: Biomarker discovery +- Train classifiers to predict clinical outcome +- Use scikit-learn Random Forest or SVM +- Calculate feature importance (which populations matter) +- Cross-validate prediction accuracy +- Identify candidate biomarkers + +Step 10: Quality metrics and batch effects +- Calculate CV for control samples +- Detect batch effects across acquisition dates +- Apply batch correction if needed +- Generate Levey-Jennings plots for QC + +Step 11: Visualization suite +- Traditional flow plots: + * Bivariate dot plots with quadrant gates + * Histogram overlays + * Contour plots +- High-dimensional plots: + * UMAP colored by population + * Heatmaps of marker expression + * Violin plots for marker distributions +- Interactive plots with Plotly + +Step 12: Generate clinical flow cytometry report +- Sample information and QC summary +- Gating strategy diagrams +- Population frequency tables +- Reference range comparisons +- Statistical comparisons between groups +- Interpretation and clinical significance +- Export as PDF for clinical review + +Expected Output: +- Parsed and compensated flow cytometry data +- Traditional and automated gating results +- High-dimensional clustering and UMAP +- Differential abundance statistics +- Biomarker candidates for clinical outcome +- Publication-quality flow plots +- Clinical flow cytometry report +``` + +--- + ## Summary These examples demonstrate: @@ -2647,6 +3031,44 @@ These examples demonstrate: 4. **End-to-end workflows**: From data acquisition to publication-ready reports 5. **Best practices**: QC, statistical rigor, visualization, interpretation, and documentation +### Skills Coverage Summary + +The examples in this document cover the following skill categories: + +**Databases & Data Sources:** +- Biological: `chembl-database`, `pubchem-database`, `drugbank-database`, `uniprot-database`, `gene-database`, `ensembl-database`, `clinvar-database`, `cosmic-database`, `string-database`, `kegg-database`, `reactome-database`, `hmdb-database`, `pdb-database`, `alphafold-database`, `zinc-database`, `gwas-database`, `geo-database`, `ena-database`, `cellxgene-census`, `metabolomics-workbench-database`, `brenda-database`, `clinpgx-database` +- Clinical: `clinicaltrials-database`, `fda-database` +- Literature: `pubmed-database`, `openalex-database`, `biorxiv-database` + +**Analysis Packages:** +- Chemistry: `rdkit`, `datamol`, `medchem`, `molfeat`, `deepchem`, `torchdrug`, `pytdc`, `diffdock`, `pyopenms`, `matchms`, `cobrapy` +- Genomics: `biopython`, `pysam`, `pydeseq2`, `scanpy`, `scvi-tools`, `anndata`, `gget`, `geniml`, `deeptools`, `etetoolkit`, `scikit-bio` +- Proteins: `esm`, `bioservices` +- Machine Learning: `scikit-learn`, `pytorch-lightning`, `torch_geometric`, `transformers`, `stable-baselines3`, `shap` +- Statistics: `statsmodels`, `statistical-analysis`, `pymc`, `scikit-survival` +- Visualization: `matplotlib`, `seaborn`, `plotly`, `scientific-visualization` +- Data Processing: `polars`, `dask`, `vaex`, `networkx` +- Materials: `pymatgen` +- Physics: `astropy`, `sympy`, `fluidsim` +- Quantum: `qiskit`, `pennylane`, `cirq`, `qutip` +- Neuroscience: `neurokit2`, `neuropixels-analysis` +- Pathology: `histolab`, `pathml`, `pydicom` +- Flow Cytometry: `flowio` +- Dimensionality Reduction: `umap-learn`, `arboreto` +- Lab Automation: `pylabrobot`, `opentrons-integration`, `benchling-integration`, `labarchive-integration`, `protocolsio-integration` +- Simulation: `simpy`, `pymoo` + +**Writing & Reporting:** +- `scientific-writing`, `scientific-visualization`, `scientific-schematics`, `scientific-slides` +- `clinical-reports`, `clinical-decision-support` +- `literature-review`, `hypothesis-generation`, `scientific-critical-thinking` +- `research-grants`, `peer-review` +- `document-skills`, `latex-posters`, `pptx-posters` +- `citation-management`, `market-research-reports` + +**Image & Media:** +- `generate-image`, `omero-integration` + ### How to Use These Examples 1. **Adapt to your needs**: Modify parameters, datasets, and objectives for your specific research question