mirror of
https://github.com/K-Dense-AI/claude-scientific-skills.git
synced 2026-01-26 16:58:56 +08:00
Add support for Vaex for fast, memory-efficient exploration and visualization of large tabular datasets using lazy, out-of-core computation.
This commit is contained in:
10
README.md
10
README.md
@@ -1,7 +1,7 @@
|
||||
# Claude Scientific Skills
|
||||
|
||||
[](LICENSE.md)
|
||||
[](#what-s-included)
|
||||
[](#what-s-included)
|
||||
[](#what-s-included)
|
||||
|
||||
A comprehensive collection of ready-to-use scientific skills for Claude, curated by the K-Dense team.
|
||||
@@ -47,7 +47,7 @@ These skills enable Claude to work with specialized scientific libraries and dat
|
||||
| Category | Count | Description |
|
||||
|----------|-------|-------------|
|
||||
| 📊 **Scientific Databases** | 26 | PubMed, PubChem, UniProt, ChEMBL, COSMIC, DrugBank, AlphaFold DB, bioRxiv, and more |
|
||||
| 🔬 **Scientific Packages** | 60 | BioPython, RDKit, PyTorch, Scanpy, scvi-tools, ESM, NetworkX, SimPy, pydicom, PyHealth, Data Commons, histolab, LaminDB, PathML, PyLabRobot, HypoGeniC, MarkItDown, and more |
|
||||
| 🔬 **Scientific Packages** | 61 | BioPython, RDKit, PyTorch, Scanpy, scvi-tools, ESM, NetworkX, SimPy, pydicom, PyHealth, Data Commons, histolab, LaminDB, PathML, PyLabRobot, HypoGeniC, MarkItDown, Vaex, and more |
|
||||
| 🔌 **Scientific Integrations** | 7 | Benchling, DNAnexus, Opentrons, LabArchives, LatchBio, OMERO, Protocols.io |
|
||||
| 🛠️ **Scientific Helpers** | 2 | Context initialization and resource detection utilities |
|
||||
| 📚 **Documented Workflows** | 122 | Ready-to-use examples and reference materials |
|
||||
@@ -313,7 +313,7 @@ results, conclusions and providing recommendations."
|
||||
---
|
||||
|
||||
### 🔬 Scientific Packages
|
||||
**61 specialized Python packages** organized by domain.
|
||||
**62 specialized Python packages** organized by domain.
|
||||
|
||||
📖 **[Full Package Documentation →](docs/scientific-packages.md)**
|
||||
|
||||
@@ -355,9 +355,9 @@ results, conclusions and providing recommendations."
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary><strong>Data Analysis & Visualization (8 packages)</strong></summary>
|
||||
<summary><strong>Data Analysis & Visualization (9 packages)</strong></summary>
|
||||
|
||||
- Dask, Matplotlib, NetworkX, Polars, ReportLab, Seaborn, SimPy, SymPy
|
||||
- Dask, Matplotlib, NetworkX, Polars, ReportLab, Seaborn, SimPy, SymPy, Vaex
|
||||
|
||||
</details>
|
||||
|
||||
|
||||
Reference in New Issue
Block a user