Add support for Vaex for fast, memory-efficient exploration and visualization of large tabular datasets using lazy, out-of-core computation.

This commit is contained in:
Timothy Kassis
2025-11-02 14:43:20 -08:00
parent f32b3f8b42
commit 27d6ee387f
10 changed files with 3720 additions and 5 deletions

View File

@@ -68,6 +68,7 @@
- **Seaborn** - Statistical data visualization with dataset-oriented interface, automatic confidence intervals, publication-quality themes, colorblind-safe palettes, and comprehensive support for exploratory analysis, distribution comparisons, correlation matrices, regression plots, and multi-panel figures
- **SimPy** - Process-based discrete-event simulation framework for modeling systems with processes, queues, and resource contention (manufacturing, service operations, network traffic, logistics). Supports generator-based process definition, multiple resource types (Resource, PriorityResource, PreemptiveResource, Container, Store), event-driven scheduling, process interaction mechanisms (signaling, interruption, parallel/sequential execution), real-time simulation synchronized with wall-clock time, and comprehensive monitoring capabilities for utilization, wait times, and queue statistics
- **SymPy** - Symbolic mathematics in Python for exact computation using mathematical symbols rather than numerical approximations. Provides comprehensive support for symbolic algebra (simplification, expansion, factorization), calculus (derivatives, integrals, limits, series), equation solving (algebraic, differential, systems of equations), matrices and linear algebra (eigenvalues, decompositions, solving linear systems), physics (classical mechanics with Lagrangian/Hamiltonian formulations, quantum mechanics, vector analysis, units), number theory (primes, factorization, modular arithmetic, Diophantine equations), geometry (2D/3D analytic geometry), combinatorics (permutations, combinations, partitions, group theory), logic and sets, statistics (probability distributions, random variables), special functions (gamma, Bessel, orthogonal polynomials), and code generation (lambdify to NumPy/SciPy functions, C/Fortran code generation, LaTeX output for documentation). Emphasizes exact arithmetic using rational numbers and symbolic representations, supports assumptions for improved simplification (positive, real, integer), integrates seamlessly with NumPy/SciPy through lambdify for fast numerical evaluation, and enables symbolic-to-numeric pipelines for scientific computing workflows
- **Vaex** - High-performance Python library for lazy, out-of-core DataFrames to process and visualize tabular datasets larger than available RAM. Processes over a billion rows per second through memory-mapped files (HDF5, Apache Arrow), lazy evaluation, and virtual columns (zero memory overhead). Provides instant file opening, efficient aggregations across billions of rows, interactive visualizations without sampling, machine learning pipelines with transformers (scalers, encoders, PCA), and seamless integration with pandas/NumPy/Arrow. Includes comprehensive ML framework (vaex.ml) with feature scaling, categorical encoding, dimensionality reduction, and integration with scikit-learn/XGBoost/LightGBM/CatBoost. Supports distributed computing via Dask, asynchronous operations, and state management for production deployment. Use cases: processing gigabyte to terabyte datasets, fast statistical aggregations on massive data, visualizing billion-row datasets, ML pipelines on big data, converting between data formats, and working with astronomical, financial, or scientific large-scale datasets
- **ReportLab** - Programmatic PDF generation for reports and documents
## Phylogenetics & Trees