Add neuropixels-analysis skill for extracellular electrophysiology

Adds comprehensive toolkit for analyzing Neuropixels high-density neural
recordings using SpikeInterface, Allen Institute, and IBL best practices.

Features:
- Data loading from SpikeGLX, Open Ephys, and NWB formats
- Preprocessing pipelines (filtering, phase shift, CAR, bad channel detection)
- Motion/drift estimation and correction
- Spike sorting integration (Kilosort4, SpykingCircus2, Mountainsort5)
- Quality metrics computation (SNR, ISI violations, presence ratio)
- Automated curation using Allen/IBL criteria
- AI-assisted visual curation for uncertain units
- Export to Phy and NWB formats

Supports Neuropixels 1.0 and 2.0 probes.

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
This commit is contained in:
Robert
2025-12-17 11:06:28 -05:00
parent 4fb9c053f7
commit 312f18ae60
21 changed files with 5358 additions and 1 deletions

View File

@@ -95,6 +95,7 @@
### Healthcare AI & Clinical Machine Learning
- **NeuroKit2** - Comprehensive biosignal processing toolkit for analyzing physiological data including ECG, EEG, EDA, RSP, PPG, EMG, and EOG signals. Use this skill when processing cardiovascular signals, brain activity, electrodermal responses, respiratory patterns, muscle activity, or eye movements. Key features include: automated signal processing pipelines (cleaning, peak detection, delineation, quality assessment), heart rate variability analysis across time/frequency/nonlinear domains (SDNN, RMSSD, LF/HF, DFA, entropy measures), EEG analysis (frequency band power, microstates, source localization), autonomic nervous system assessment (sympathetic indices, respiratory sinus arrhythmia), comprehensive complexity measures (25+ entropy types, 15+ fractal dimensions, Lyapunov exponents), event-related and interval-related analysis modes, epoch creation and averaging for stimulus-locked responses, multi-signal integration with unified workflows, and extensive signal processing utilities (filtering, decomposition, peak correction, spectral analysis). Includes modular reference documentation across 12 specialized domains. Use cases: heart rate variability for cardiovascular health assessment, EEG microstates for consciousness studies, electrodermal activity for emotion research, respiratory variability analysis, psychophysiology experiments, affective computing, stress monitoring, sleep staging, autonomic dysfunction assessment, biofeedback applications, and multi-modal physiological signal integration for comprehensive human state monitoring
- **PyHealth** - Comprehensive healthcare AI toolkit for developing, testing, and deploying machine learning models with clinical data. Provides specialized tools for electronic health records (EHR), physiological signals, medical imaging, and clinical text analysis. Key features include: 10+ healthcare datasets (MIMIC-III/IV, eICU, OMOP, sleep EEG, COVID-19 CXR), 20+ predefined clinical prediction tasks (mortality, hospital readmission, length of stay, drug recommendation, sleep staging, EEG analysis), 33+ models (Logistic Regression, MLP, CNN, RNN, Transformer, GNN, plus healthcare-specific models like RETAIN, SafeDrug, GAMENet, StageNet), comprehensive data processing (sequence processors, signal processors, medical code translation between ICD-9/10, NDC, RxNorm, ATC systems), training/evaluation utilities (Trainer class, fairness metrics, calibration, uncertainty quantification), and interpretability tools (attention visualization, SHAP, ChEFER). 3x faster than pandas for healthcare data processing. Use cases: ICU mortality prediction, hospital readmission risk assessment, safe medication recommendation with drug-drug interaction constraints, sleep disorder diagnosis from EEG signals, medical code standardization and translation, clinical text to ICD coding, length of stay estimation, and any clinical ML application requiring interpretability, fairness assessment, and calibrated predictions for healthcare deployment
- **Neuropixels-Analysis** - Comprehensive toolkit for analyzing Neuropixels high-density neural recordings using SpikeInterface, Allen Institute, and International Brain Laboratory (IBL) best practices. Supports the full workflow from raw data to publication-ready curated units. Key features include: data loading from SpikeGLX, Open Ephys, and NWB formats, preprocessing pipelines (highpass filtering, phase shift correction for Neuropixels 1.0, bad channel detection, common average referencing), motion/drift estimation and correction (kilosort_like and nonrigid_accurate presets), spike sorting integration (Kilosort4 GPU, SpykingCircus2, Mountainsort5 CPU), comprehensive postprocessing (waveform extraction, template computation, spike amplitudes, correlograms, unit locations), quality metrics computation (SNR, ISI violations, presence ratio, amplitude cutoff, drift metrics), automated curation using Allen Institute and IBL criteria with configurable thresholds, AI-assisted visual curation for uncertain units using Claude API, and export to Phy for manual review or NWB for sharing. Supports Neuropixels 1.0 (960 electrodes, 384 channels) and Neuropixels 2.0 (single and 4-shank configurations). Use cases: extracellular electrophysiology analysis, spike sorting from silicon probes, neural population recordings, systems neuroscience research, unit quality assessment, publication-ready neural data processing, and integration of AI-assisted curation for borderline units
### Protein Engineering & Design
- **Adaptyv** - Cloud laboratory platform for automated protein testing and validation. Submit protein sequences via API or web interface and receive experimental results in approximately 21 days. Supports multiple assay types including binding assays (biolayer interferometry for protein-target interactions, KD/kon/koff measurements), expression testing (quantify protein expression levels in E. coli, mammalian, yeast, or insect cells), thermostability measurements (DSF and CD for Tm determination and thermal stability profiling), and enzyme activity assays (kinetic parameters, substrate specificity, inhibitor testing). Includes computational optimization tools for pre-screening sequences: NetSolP/SoluProt for solubility prediction, SolubleMPNN for sequence redesign to improve expression, ESM for sequence likelihood scoring, ipTM (AlphaFold-Multimer) for interface stability assessment, and pSAE for aggregation risk quantification. Platform features automated workflows from expression through purification to assay execution with quality control, webhook notifications for experiment completion, batch submission support for high-throughput screening, and comprehensive results with kinetic parameters, confidence metrics, and raw data access. Use cases: antibody affinity maturation, therapeutic protein developability assessment, enzyme engineering and optimization, protein stability improvement, AI-driven protein design validation, library screening for expression and function, lead optimization with experimental feedback, and integration of computational design with wet-lab validation in iterative design-build-test-learn cycles