Improve the scikit-learn skill

This commit is contained in:
Timothy Kassis
2025-11-04 10:11:46 -08:00
parent 63a4293f1a
commit 4ad4f9970f
10 changed files with 3293 additions and 3606 deletions

View File

@@ -1,546 +1,287 @@
# Scikit-learn Quick Reference
## Essential Imports
## Common Import Patterns
```python
# Core
import numpy as np
import pandas as pd
# Core scikit-learn
import sklearn
# Data splitting and cross-validation
from sklearn.model_selection import train_test_split, cross_val_score, GridSearchCV
from sklearn.pipeline import Pipeline, make_pipeline
from sklearn.compose import ColumnTransformer
# Preprocessing
from sklearn.preprocessing import (
StandardScaler, MinMaxScaler, RobustScaler,
OneHotEncoder, OrdinalEncoder, LabelEncoder,
PolynomialFeatures
)
from sklearn.preprocessing import StandardScaler, MinMaxScaler, OneHotEncoder
from sklearn.impute import SimpleImputer
# Models - Classification
from sklearn.linear_model import LogisticRegression
# Feature selection
from sklearn.feature_selection import SelectKBest, RFE
# Supervised learning
from sklearn.linear_model import LogisticRegression, Ridge, Lasso
from sklearn.ensemble import RandomForestClassifier, GradientBoostingRegressor
from sklearn.svm import SVC, SVR
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import (
RandomForestClassifier,
GradientBoostingClassifier,
HistGradientBoostingClassifier
)
from sklearn.svm import SVC
from sklearn.neighbors import KNeighborsClassifier
# Models - Regression
from sklearn.linear_model import LinearRegression, Ridge, Lasso
from sklearn.ensemble import (
RandomForestRegressor,
GradientBoostingRegressor,
HistGradientBoostingRegressor
)
# Clustering
# Unsupervised learning
from sklearn.cluster import KMeans, DBSCAN, AgglomerativeClustering
from sklearn.mixture import GaussianMixture
# Dimensionality Reduction
from sklearn.decomposition import PCA, NMF, TruncatedSVD
from sklearn.manifold import TSNE
from sklearn.decomposition import PCA, NMF
# Metrics
from sklearn.metrics import (
accuracy_score, precision_score, recall_score, f1_score,
confusion_matrix, classification_report,
mean_squared_error, r2_score, mean_absolute_error
mean_squared_error, r2_score, confusion_matrix, classification_report
)
# Pipeline
from sklearn.pipeline import Pipeline, make_pipeline
from sklearn.compose import ColumnTransformer, make_column_transformer
# Utilities
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```
## Basic Workflow Template
## Installation
### Classification
```bash
# Using uv (recommended)
uv pip install scikit-learn
# Optional dependencies
uv pip install scikit-learn[plots] # For plotting utilities
uv pip install pandas numpy matplotlib seaborn # Common companions
```
## Quick Workflow Templates
### Classification Pipeline
```python
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report
from sklearn.metrics import classification_report, confusion_matrix
# Split data
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=42, stratify=y
X, y, test_size=0.2, stratify=y, random_state=42
)
# Scale features
# Preprocess
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
# Train model
# Train
model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(X_train_scaled, y_train)
# Predict and evaluate
# Evaluate
y_pred = model.predict(X_test_scaled)
print(classification_report(y_test, y_pred))
print(confusion_matrix(y_test, y_pred))
```
### Regression
### Regression Pipeline
```python
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.metrics import mean_squared_error, r2_score
# Split data
# Split
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=42
)
# Scale features
# Preprocess and train
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
# Train model
model = RandomForestRegressor(n_estimators=100, random_state=42)
model = GradientBoostingRegressor(n_estimators=100, random_state=42)
model.fit(X_train_scaled, y_train)
# Predict and evaluate
# Evaluate
y_pred = model.predict(X_test_scaled)
print(f"RMSE: {mean_squared_error(y_test, y_pred, squared=False):.3f}")
print(f"R²: {r2_score(y_test, y_pred):.3f}")
print(f" Score: {r2_score(y_test, y_pred):.3f}")
```
### With Pipeline (Recommended)
### Cross-Validation
```python
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import cross_val_score
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split, cross_val_score
# Create pipeline
pipeline = Pipeline([
('scaler', StandardScaler()),
('classifier', RandomForestClassifier(n_estimators=100, random_state=42))
])
# Split and train
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=42
)
pipeline.fit(X_train, y_train)
# Evaluate
score = pipeline.score(X_test, y_test)
cv_scores = cross_val_score(pipeline, X_train, y_train, cv=5)
print(f"Test accuracy: {score:.3f}")
print(f"CV accuracy: {cv_scores.mean():.3f} (+/- {cv_scores.std():.3f})")
model = RandomForestClassifier(n_estimators=100, random_state=42)
scores = cross_val_score(model, X, y, cv=5, scoring='accuracy')
print(f"CV Accuracy: {scores.mean():.3f} (+/- {scores.std() * 2:.3f})")
```
## Common Preprocessing Patterns
### Numeric Data
### Complete Pipeline with Mixed Data Types
```python
from sklearn.preprocessing import StandardScaler
from sklearn.impute import SimpleImputer
from sklearn.pipeline import Pipeline
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.impute import SimpleImputer
from sklearn.ensemble import RandomForestClassifier
# Define feature types
numeric_features = ['age', 'income']
categorical_features = ['gender', 'occupation']
# Create preprocessing pipelines
numeric_transformer = Pipeline([
('imputer', SimpleImputer(strategy='median')),
('scaler', StandardScaler())
])
```
### Categorical Data
```python
from sklearn.preprocessing import OneHotEncoder
from sklearn.impute import SimpleImputer
from sklearn.pipeline import Pipeline
categorical_transformer = Pipeline([
('imputer', SimpleImputer(strategy='constant', fill_value='missing')),
('imputer', SimpleImputer(strategy='most_frequent')),
('onehot', OneHotEncoder(handle_unknown='ignore'))
])
```
### Mixed Data with ColumnTransformer
```python
from sklearn.compose import ColumnTransformer
numeric_features = ['age', 'income', 'credit_score']
categorical_features = ['country', 'occupation']
preprocessor = ColumnTransformer(
transformers=[
('num', numeric_transformer, numeric_features),
('cat', categorical_transformer, categorical_features)
])
# Complete pipeline
from sklearn.ensemble import RandomForestClassifier
pipeline = Pipeline([
('preprocessor', preprocessor),
('classifier', RandomForestClassifier())
# Combine transformers
preprocessor = ColumnTransformer([
('num', numeric_transformer, numeric_features),
('cat', categorical_transformer, categorical_features)
])
# Full pipeline
model = Pipeline([
('preprocessor', preprocessor),
('classifier', RandomForestClassifier(n_estimators=100, random_state=42))
])
# Fit and predict
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
```
## Model Selection Cheat Sheet
### Quick Decision Tree
```
Is it supervised?
├─ Yes
│ ├─ Predicting categories? → Classification
│ │ ├─ Start with: LogisticRegression (baseline)
│ │ ├─ Then try: RandomForestClassifier
│ │ └─ Best performance: HistGradientBoostingClassifier
│ └─ Predicting numbers? → Regression
│ ├─ Start with: LinearRegression/Ridge (baseline)
│ ├─ Then try: RandomForestRegressor
│ └─ Best performance: HistGradientBoostingRegressor
└─ No
├─ Grouping similar items? → Clustering
│ ├─ Know # clusters: KMeans
│ └─ Unknown # clusters: DBSCAN or HDBSCAN
├─ Reducing dimensions?
│ ├─ For preprocessing: PCA
│ └─ For visualization: t-SNE or UMAP
└─ Finding outliers? → IsolationForest or LocalOutlierFactor
```
### Algorithm Selection by Data Size
- **Small (<1K samples)**: Any algorithm
- **Medium (1K-100K)**: Random Forests, Gradient Boosting, Neural Networks
- **Large (>100K)**: SGDClassifier/Regressor, HistGradientBoosting, LinearSVC
### When to Scale Features
**Always scale**:
- SVM, Neural Networks
- K-Nearest Neighbors
- Linear/Logistic Regression (with regularization)
- PCA, LDA
- Any gradient descent algorithm
**Don't need to scale**:
- Tree-based (Decision Trees, Random Forests, Gradient Boosting)
- Naive Bayes
## Hyperparameter Tuning
### GridSearchCV
### Hyperparameter Tuning
```python
from sklearn.model_selection import GridSearchCV
from sklearn.ensemble import RandomForestClassifier
param_grid = {
'n_estimators': [100, 200, 500],
'n_estimators': [100, 200, 300],
'max_depth': [10, 20, None],
'min_samples_split': [2, 5, 10]
}
model = RandomForestClassifier(random_state=42)
grid_search = GridSearchCV(
RandomForestClassifier(random_state=42),
param_grid,
cv=5,
scoring='f1_weighted',
n_jobs=-1
model, param_grid, cv=5, scoring='accuracy', n_jobs=-1
)
grid_search.fit(X_train, y_train)
best_model = grid_search.best_estimator_
print(f"Best params: {grid_search.best_params_}")
print(f"Best score: {grid_search.best_score_:.3f}")
# Use best model
best_model = grid_search.best_estimator_
```
### RandomizedSearchCV (Faster)
## Common Patterns
### Loading Data
```python
from sklearn.model_selection import RandomizedSearchCV
from scipy.stats import randint, uniform
# From scikit-learn datasets
from sklearn.datasets import load_iris, load_digits, make_classification
param_distributions = {
'n_estimators': randint(100, 1000),
'max_depth': randint(5, 50),
'min_samples_split': randint(2, 20)
}
# Built-in datasets
iris = load_iris()
X, y = iris.data, iris.target
random_search = RandomizedSearchCV(
RandomForestClassifier(random_state=42),
param_distributions,
n_iter=50, # Number of combinations to try
cv=5,
n_jobs=-1,
random_state=42
# Synthetic data
X, y = make_classification(
n_samples=1000, n_features=20, n_classes=2, random_state=42
)
random_search.fit(X_train, y_train)
# From pandas
import pandas as pd
df = pd.read_csv('data.csv')
X = df.drop('target', axis=1)
y = df['target']
```
### Pipeline with GridSearchCV
### Handling Imbalanced Data
```python
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.model_selection import GridSearchCV
pipeline = Pipeline([
('scaler', StandardScaler()),
('svm', SVC())
])
param_grid = {
'svm__C': [0.1, 1, 10],
'svm__kernel': ['rbf', 'linear'],
'svm__gamma': ['scale', 'auto']
}
grid = GridSearchCV(pipeline, param_grid, cv=5)
grid.fit(X_train, y_train)
```
## Cross-Validation
### Basic Cross-Validation
```python
from sklearn.model_selection import cross_val_score
scores = cross_val_score(model, X, y, cv=5, scoring='accuracy')
print(f"Accuracy: {scores.mean():.3f} (+/- {scores.std():.3f})")
```
### Multiple Metrics
```python
from sklearn.model_selection import cross_validate
scoring = ['accuracy', 'precision_weighted', 'recall_weighted', 'f1_weighted']
results = cross_validate(model, X, y, cv=5, scoring=scoring)
for metric in scoring:
scores = results[f'test_{metric}']
print(f"{metric}: {scores.mean():.3f} (+/- {scores.std():.3f})")
```
### Custom CV Strategies
```python
from sklearn.model_selection import StratifiedKFold, TimeSeriesSplit
# For imbalanced classification
cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)
# For time series
cv = TimeSeriesSplit(n_splits=5)
scores = cross_val_score(model, X, y, cv=cv)
```
## Common Metrics
### Classification
```python
from sklearn.metrics import (
accuracy_score, balanced_accuracy_score,
precision_score, recall_score, f1_score,
confusion_matrix, classification_report,
roc_auc_score
)
# Basic metrics
accuracy = accuracy_score(y_true, y_pred)
f1 = f1_score(y_true, y_pred, average='weighted')
# Comprehensive report
print(classification_report(y_true, y_pred))
# ROC AUC (requires probabilities)
y_proba = model.predict_proba(X_test)[:, 1]
auc = roc_auc_score(y_true, y_proba)
```
### Regression
```python
from sklearn.metrics import (
mean_squared_error,
mean_absolute_error,
r2_score
)
mse = mean_squared_error(y_true, y_pred)
rmse = mean_squared_error(y_true, y_pred, squared=False)
mae = mean_absolute_error(y_true, y_pred)
r2 = r2_score(y_true, y_pred)
print(f"RMSE: {rmse:.3f}")
print(f"MAE: {mae:.3f}")
print(f"R²: {r2:.3f}")
```
## Feature Engineering
### Polynomial Features
```python
from sklearn.preprocessing import PolynomialFeatures
poly = PolynomialFeatures(degree=2, include_bias=False)
X_poly = poly.fit_transform(X)
# [x1, x2] → [x1, x2, x1², x1·x2, x2²]
```
### Feature Selection
```python
from sklearn.feature_selection import (
SelectKBest, f_classif,
RFE,
SelectFromModel
)
# Univariate selection
selector = SelectKBest(f_classif, k=10)
X_selected = selector.fit_transform(X, y)
# Recursive feature elimination
from sklearn.ensemble import RandomForestClassifier
rfe = RFE(RandomForestClassifier(), n_features_to_select=10)
X_selected = rfe.fit_transform(X, y)
# Model-based selection
selector = SelectFromModel(
RandomForestClassifier(n_estimators=100),
threshold='median'
)
X_selected = selector.fit_transform(X, y)
# Use class_weight parameter
model = RandomForestClassifier(class_weight='balanced', random_state=42)
model.fit(X_train, y_train)
# Or use appropriate metrics
from sklearn.metrics import balanced_accuracy_score, f1_score
print(f"Balanced Accuracy: {balanced_accuracy_score(y_test, y_pred):.3f}")
print(f"F1 Score: {f1_score(y_test, y_pred):.3f}")
```
### Feature Importance
```python
# Tree-based models
model = RandomForestClassifier()
from sklearn.ensemble import RandomForestClassifier
import pandas as pd
model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(X_train, y_train)
importances = model.feature_importances_
# Visualize
import matplotlib.pyplot as plt
indices = np.argsort(importances)[::-1]
plt.bar(range(X.shape[1]), importances[indices])
plt.xticks(range(X.shape[1]), feature_names[indices], rotation=90)
plt.show()
# Get feature importances
importances = pd.DataFrame({
'feature': feature_names,
'importance': model.feature_importances_
}).sort_values('importance', ascending=False)
# Permutation importance (works for any model)
from sklearn.inspection import permutation_importance
result = permutation_importance(model, X_test, y_test, n_repeats=10)
importances = result.importances_mean
print(importances.head(10))
```
## Clustering
### K-Means
### Clustering
```python
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
# Always scale for k-means
# Scale data first
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# Fit k-means
# Fit K-Means
kmeans = KMeans(n_clusters=3, random_state=42)
labels = kmeans.fit_predict(X_scaled)
# Evaluate
from sklearn.metrics import silhouette_score
score = silhouette_score(X_scaled, labels)
print(f"Silhouette score: {score:.3f}")
print(f"Silhouette Score: {score:.3f}")
```
### Elbow Method
```python
inertias = []
K_range = range(2, 11)
for k in K_range:
kmeans = KMeans(n_clusters=k, random_state=42)
kmeans.fit(X_scaled)
inertias.append(kmeans.inertia_)
plt.plot(K_range, inertias, 'bo-')
plt.xlabel('k')
plt.ylabel('Inertia')
plt.show()
```
### DBSCAN
```python
from sklearn.cluster import DBSCAN
dbscan = DBSCAN(eps=0.5, min_samples=5)
labels = dbscan.fit_predict(X_scaled)
# -1 indicates noise/outliers
n_clusters = len(set(labels)) - (1 if -1 in labels else 0)
n_noise = list(labels).count(-1)
print(f"Clusters: {n_clusters}, Noise points: {n_noise}")
```
## Dimensionality Reduction
### PCA
### Dimensionality Reduction
```python
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
# Always scale before PCA
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# Specify n_components
# Fit PCA
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X_scaled)
X_reduced = pca.fit_transform(X)
# Or specify variance to retain
pca = PCA(n_components=0.95) # Keep 95% variance
X_pca = pca.fit_transform(X_scaled)
print(f"Explained variance: {pca.explained_variance_ratio_}")
print(f"Components needed: {pca.n_components_}")
# Plot
plt.scatter(X_reduced[:, 0], X_reduced[:, 1], c=y, cmap='viridis')
plt.xlabel('PC1')
plt.ylabel('PC2')
plt.title(f'PCA (explained variance: {pca.explained_variance_ratio_.sum():.2%})')
```
### t-SNE (Visualization Only)
```python
from sklearn.manifold import TSNE
# Reduce to 50 dimensions with PCA first (recommended)
pca = PCA(n_components=50)
X_pca = pca.fit_transform(X_scaled)
# Apply t-SNE
tsne = TSNE(n_components=2, random_state=42, perplexity=30)
X_tsne = tsne.fit_transform(X_pca)
# Visualize
plt.scatter(X_tsne[:, 0], X_tsne[:, 1], c=y, cmap='viridis')
plt.colorbar()
plt.show()
```
## Saving and Loading Models
### Model Persistence
```python
import joblib
@@ -548,78 +289,145 @@ import joblib
# Save model
joblib.dump(model, 'model.pkl')
# Save pipeline
joblib.dump(pipeline, 'pipeline.pkl')
# Load
model = joblib.load('model.pkl')
pipeline = joblib.load('pipeline.pkl')
# Use loaded model
y_pred = model.predict(X_new)
# Load model
loaded_model = joblib.load('model.pkl')
predictions = loaded_model.predict(X_new)
```
## Common Pitfalls and Solutions
## Common Gotchas and Solutions
### Data Leakage
**Wrong**: Fit on all data before split
```python
scaler = StandardScaler().fit(X)
X_train, X_test = train_test_split(scaler.transform(X))
```
# WRONG: Fitting scaler on all data
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
X_train, X_test = train_test_split(X_scaled)
**Correct**: Use pipeline or fit only on train
```python
# RIGHT: Fit on training data only
X_train, X_test = train_test_split(X)
pipeline = Pipeline([('scaler', StandardScaler()), ('model', model)])
pipeline.fit(X_train, y_train)
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
# BEST: Use Pipeline
from sklearn.pipeline import Pipeline
pipeline = Pipeline([
('scaler', StandardScaler()),
('model', LogisticRegression())
])
pipeline.fit(X_train, y_train) # No leakage!
```
### Not Scaling
**Wrong**: Using SVM without scaling
```python
svm = SVC()
svm.fit(X_train, y_train)
```
**Correct**: Scale for SVM
```python
pipeline = Pipeline([('scaler', StandardScaler()), ('svm', SVC())])
pipeline.fit(X_train, y_train)
```
### Wrong Metric for Imbalanced Data
**Wrong**: Using accuracy for 99:1 imbalance
```python
accuracy = accuracy_score(y_true, y_pred) # Can be misleading
```
**Correct**: Use appropriate metrics
```python
f1 = f1_score(y_true, y_pred, average='weighted')
balanced_acc = balanced_accuracy_score(y_true, y_pred)
```
### Not Using Stratification
**Wrong**: Random split for imbalanced data
```python
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
```
**Correct**: Stratify for imbalanced classes
### Stratified Splitting for Classification
```python
# Always use stratify for classification
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, stratify=y
X, y, test_size=0.2, stratify=y, random_state=42
)
```
### Random State for Reproducibility
```python
# Set random_state for reproducibility
model = RandomForestClassifier(n_estimators=100, random_state=42)
```
### Handling Unknown Categories
```python
# Use handle_unknown='ignore' for OneHotEncoder
encoder = OneHotEncoder(handle_unknown='ignore')
```
### Feature Names with Pipelines
```python
# Get feature names after transformation
preprocessor.fit(X_train)
feature_names = preprocessor.get_feature_names_out()
```
## Cheat Sheet: Algorithm Selection
### Classification
| Problem | Algorithm | When to Use |
|---------|-----------|-------------|
| Binary/Multiclass | Logistic Regression | Fast baseline, interpretability |
| Binary/Multiclass | Random Forest | Good default, robust |
| Binary/Multiclass | Gradient Boosting | Best accuracy, willing to tune |
| Binary/Multiclass | SVM | Small data, complex boundaries |
| Binary/Multiclass | Naive Bayes | Text classification, fast |
| High dimensions | Linear SVM or Logistic | Text, many features |
### Regression
| Problem | Algorithm | When to Use |
|---------|-----------|-------------|
| Continuous target | Linear Regression | Fast baseline, interpretability |
| Continuous target | Ridge/Lasso | Regularization needed |
| Continuous target | Random Forest | Good default, non-linear |
| Continuous target | Gradient Boosting | Best accuracy |
| Continuous target | SVR | Small data, non-linear |
### Clustering
| Problem | Algorithm | When to Use |
|---------|-----------|-------------|
| Known K, spherical | K-Means | Fast, simple |
| Unknown K, arbitrary shapes | DBSCAN | Noise/outliers present |
| Hierarchical structure | Agglomerative | Need dendrogram |
| Soft clustering | Gaussian Mixture | Probability estimates |
### Dimensionality Reduction
| Problem | Algorithm | When to Use |
|---------|-----------|-------------|
| Linear reduction | PCA | Variance explanation |
| Visualization | t-SNE | 2D/3D plots |
| Non-negative data | NMF | Images, text |
| Sparse data | TruncatedSVD | Text, recommender systems |
## Performance Tips
1. **Use n_jobs=-1** for parallel processing (RandomForest, GridSearchCV)
2. **Use HistGradientBoosting** for large datasets (>10K samples)
3. **Use MiniBatchKMeans** for large clustering tasks
4. **Use IncrementalPCA** for data that doesn't fit in memory
5. **Use sparse matrices** for high-dimensional sparse data (text)
6. **Cache transformers** in pipelines during grid search
7. **Use RandomizedSearchCV** instead of GridSearchCV for large parameter spaces
8. **Reduce dimensionality** with PCA before applying expensive algorithms
### Speed Up Training
```python
# Use n_jobs=-1 for parallel processing
model = RandomForestClassifier(n_estimators=100, n_jobs=-1)
# Use warm_start for incremental learning
model = RandomForestClassifier(n_estimators=100, warm_start=True)
model.fit(X, y)
model.n_estimators += 50
model.fit(X, y) # Adds 50 more trees
# Use partial_fit for online learning
from sklearn.linear_model import SGDClassifier
model = SGDClassifier()
for X_batch, y_batch in batches:
model.partial_fit(X_batch, y_batch, classes=np.unique(y))
```
### Memory Efficiency
```python
# Use sparse matrices
from scipy.sparse import csr_matrix
X_sparse = csr_matrix(X)
# Use MiniBatchKMeans for large data
from sklearn.cluster import MiniBatchKMeans
model = MiniBatchKMeans(n_clusters=8, batch_size=100)
```
## Version Check
```python
import sklearn
print(f"scikit-learn version: {sklearn.__version__}")
```
## Useful Resources
- Official Documentation: https://scikit-learn.org/stable/
- User Guide: https://scikit-learn.org/stable/user_guide.html
- API Reference: https://scikit-learn.org/stable/api/index.html
- Examples: https://scikit-learn.org/stable/auto_examples/index.html
- Tutorials: https://scikit-learn.org/stable/tutorial/index.html