Remove test scripts and summary files

This commit is contained in:
Vinayak Agarwal
2026-01-05 13:06:20 -08:00
parent 3439a21f57
commit 5b52a8dd23
3 changed files with 0 additions and 1191 deletions

View File

@@ -1,641 +0,0 @@
# Clinical Reports Skill - Implementation Summary
## 📊 Overview
Successfully implemented a comprehensive clinical reports skill for the Claude Scientific Writer project.
**Implementation Date**: November 4, 2025
**Total Files Created**: 30
**Total Lines of Code/Documentation**: 11,577
**Status**: ✅ Complete and tested
---
## 📂 Structure
```
.claude/skills/clinical-reports/
├── README.md (Quick start guide)
├── SKILL.md (Main skill definition - 1,089 lines)
├── references/ (8 comprehensive guides)
│ ├── case_report_guidelines.md (571 lines)
│ ├── diagnostic_reports_standards.md (531 lines)
│ ├── clinical_trial_reporting.md (694 lines)
│ ├── patient_documentation.md (745 lines)
│ ├── regulatory_compliance.md (578 lines)
│ ├── medical_terminology.md (589 lines)
│ ├── data_presentation.md (531 lines)
│ └── peer_review_standards.md (586 lines)
├── assets/ (12 professional templates)
│ ├── case_report_template.md (353 lines)
│ ├── soap_note_template.md (254 lines)
│ ├── history_physical_template.md (244 lines)
│ ├── discharge_summary_template.md (338 lines)
│ ├── consult_note_template.md (249 lines)
│ ├── radiology_report_template.md (317 lines)
│ ├── pathology_report_template.md (261 lines)
│ ├── lab_report_template.md (349 lines)
│ ├── clinical_trial_sae_template.md (437 lines)
│ ├── clinical_trial_csr_template.md (304 lines)
│ ├── quality_checklist.md (301 lines)
│ └── hipaa_compliance_checklist.md (367 lines)
└── scripts/ (8 validation tools)
├── validate_case_report.py (198 lines)
├── check_deidentification.py (250 lines)
├── validate_trial_report.py (95 lines)
├── format_adverse_events.py (120 lines)
├── generate_report_template.py (159 lines)
├── extract_clinical_data.py (97 lines)
├── compliance_checker.py (88 lines)
└── terminology_validator.py (125 lines)
```
---
## ✅ Completed Deliverables
### 1. Main Skill File ✓
**SKILL.md** (1,089 lines)
- YAML frontmatter with name and description
- Comprehensive overview and usage guidelines
- Four major sections (case reports, diagnostic, trials, patient docs)
- CARE guidelines implementation
- ICH-E3 and CONSORT compliance
- HIPAA privacy and de-identification
- Regulatory compliance (FDA, ICH-GCP)
- Medical terminology standards
- Quality assurance principles
- Integration with other skills
- Complete workflows and checklists
### 2. Reference Documentation ✓
**8 comprehensive reference files (total 4,825 lines)**
1. **case_report_guidelines.md** (571 lines)
- Complete CARE checklist (17 items)
- Journal-specific requirements
- De-identification best practices
- Privacy and ethics guidelines
- Literature search strategies
- Submission process
2. **diagnostic_reports_standards.md** (531 lines)
- ACR radiology standards
- Structured reporting (BI-RADS, Lung-RADS, LI-RADS, PI-RADS)
- CAP pathology protocols
- Synoptic reporting elements
- Laboratory reporting (CLSI)
- LOINC coding
- Critical value reporting
3. **clinical_trial_reporting.md** (694 lines)
- ICH-E3 complete structure
- CONSORT guidelines
- SAE reporting requirements
- MedDRA coding
- DSMB procedures
- Regulatory timelines
- Causality assessment methods
4. **patient_documentation.md** (745 lines)
- SOAP note structure
- H&P comprehensive template
- Discharge summary requirements
- ROS (Review of Systems)
- Documentation standards
- Billing considerations
5. **regulatory_compliance.md** (578 lines)
- HIPAA Privacy Rule
- 18 HIPAA identifiers
- Safe Harbor de-identification
- 21 CFR Part 11 (electronic records)
- ICH-GCP principles
- FDA regulations
- EU CTR requirements
6. **medical_terminology.md** (589 lines)
- SNOMED-CT
- LOINC codes
- ICD-10-CM
- CPT codes
- Standard abbreviations
- "Do Not Use" list (Joint Commission)
- Anatomical terminology
- Laboratory units and conversions
- Grading/staging systems
7. **data_presentation.md** (531 lines)
- Clinical tables design
- Demographics tables
- Adverse events tables
- CONSORT flow diagrams
- Kaplan-Meier curves
- Forest plots
- Statistical presentation
- Software recommendations
8. **peer_review_standards.md** (586 lines)
- Review criteria for clinical manuscripts
- CARE guideline compliance
- CONSORT compliance
- STARD guidelines
- STROBE guidelines
- Statistical assessment
- Writing quality evaluation
### 3. Professional Templates ✓
**12 templates (total 3,574 lines)**
All templates include:
- Complete structure with all required sections
- Placeholder text with examples
- Formatting guidelines
- Checklists for completeness
- Regulatory compliance notes
- Best practices
**Templates created:**
1. Case report (CARE-compliant)
2. SOAP note (progress documentation)
3. History & Physical
4. Discharge summary
5. Consultation note
6. Radiology report
7. Pathology report (with synoptic reporting)
8. Laboratory report
9. SAE report (serious adverse event)
10. CSR outline (ICH-E3)
11. Quality checklist
12. HIPAA compliance checklist
### 4. Validation Scripts ✓
**8 Python scripts (total 1,132 lines)**
All scripts include:
- Command-line interface
- JSON output option
- Error handling
- Help documentation
- Executable permissions set
**Scripts created:**
1. **validate_case_report.py** - CARE compliance checker
- Validates 12+ CARE requirements
- Checks word count (1500-3500)
- Verifies references present
- Scans for HIPAA identifiers
- Generates compliance report
2. **check_deidentification.py** - HIPAA identifier scanner
- Detects all 18 HIPAA identifiers
- Severity classification (Critical/High/Medium)
- Age compliance checking (>89 aggregation)
- Detailed violation reporting
3. **validate_trial_report.py** - ICH-E3 structure validator
- Checks 15 ICH-E3 sections
- Calculates compliance rate
- Pass/fail determination
4. **format_adverse_events.py** - AE table generator
- Converts CSV to formatted markdown tables
- Calculates percentages
- Grouped by treatment arm
- Publication-ready output
5. **generate_report_template.py** - Interactive template generator
- Lists all 10 template types
- Interactive selection mode
- Command-line mode
- Automatic file copying
6. **extract_clinical_data.py** - Data extraction tool
- Extracts vital signs
- Parses demographics
- Extracts medications
- JSON output
7. **compliance_checker.py** - Regulatory compliance
- HIPAA compliance checks
- GCP compliance checks
- FDA compliance checks
- Pattern-based validation
8. **terminology_validator.py** - Medical terminology validation
- "Do Not Use" abbreviation detection
- Ambiguous abbreviation flagging
- ICD-10 code detection
- Severity classification
---
## 🎯 Key Features Implemented
### Complete Coverage
**Clinical Case Reports**
- CARE guidelines (all 17 checklist items)
- De-identification (18 HIPAA identifiers)
- Informed consent documentation
- Timeline creation
- Journal-specific formatting
**Diagnostic Reports**
- Radiology (ACR standards, Lung-RADS, BI-RADS, LI-RADS, PI-RADS)
- Pathology (CAP synoptic reporting, TNM staging)
- Laboratory (LOINC coding, critical values, reference ranges)
**Clinical Trial Reports**
- SAE reporting (7-day, 15-day timelines)
- ICH-E3 Clinical Study Reports (15 sections)
- CONSORT compliance
- MedDRA coding
- Causality assessment (WHO-UMC, Naranjo)
**Patient Documentation**
- SOAP notes (S-O-A-P structure)
- History & Physical (13 components)
- Discharge summaries (10 required elements)
- Consultation notes
### Regulatory Compliance
**HIPAA**
- Safe Harbor de-identification
- 18 identifier removal
- Privacy protection
- Breach notification
**FDA**
- 21 CFR Part 11 (electronic records)
- 21 CFR Part 50 (informed consent)
- 21 CFR Part 56 (IRB standards)
- 21 CFR Part 312 (IND regulations)
**ICH-GCP**
- Good Clinical Practice principles
- Essential documents
- Source documentation
- Record retention
### Medical Standards
**Terminology**
- SNOMED-CT
- LOINC
- ICD-10-CM
- CPT codes
- RxNorm
**Professional Organizations**
- ACR (American College of Radiology)
- CAP (College of American Pathologists)
- CLSI (Clinical Laboratory Standards Institute)
- JCAHO (Joint Commission)
---
## 🔗 Integration
### With Existing Skills
The clinical-reports skill integrates with:
-`scientific-writing` - Medical writing principles
-`peer-review` - Quality assessment
-`citation-management` - Literature references
-`research-grants` - Clinical trial protocols
### MCP System
- ✅ Skill accessible via MCP find_helpful_skills
- ✅ Compatible with existing skill structure
- ✅ Follows established patterns
- ✅ Auto-loaded by the system
---
## 📝 Documentation Updates
### Files Updated
1.**README.md**
- Added clinical reports to features
- Added example command
- Added to document types table
- Updated "What's New" section
2.**docs/SKILLS.md**
- Added Section 6: Clinical Reports (comprehensive)
- Renumbered subsequent sections (7-14)
- Added example usage for all report types
- Included all templates, references, and scripts
3.**docs/FEATURES.md**
- Added Clinical Reports section
- Listed 4 report types
- Added key features
- Included usage examples
4.**CHANGELOG.md**
- Added [Unreleased] section
- Documented new clinical-reports skill
- Listed all components and features
- Noted documentation updates
5.**clinical-reports/README.md** (New)
- Quick start guide
- Template usage examples
- Script usage instructions
- Best practices
- Integration information
---
## ✨ Highlights
### Templates from Real-World Sources
Templates based on:
- ✅ BMJ Case Reports (CARE guidelines)
- ✅ Journal of Osteopathic Medicine
- ✅ ACR radiology standards
- ✅ CAP pathology protocols
- ✅ ICH-E3 clinical study reports
- ✅ FDA guidance documents
- ✅ Academic medical centers
### Comprehensive Reference Materials
- 8 reference files totaling **4,825 lines**
- Covers all major standards and guidelines
- Includes practical examples throughout
- Cross-referenced between files
- Professional organization standards
### Robust Validation Tools
- 8 Python scripts totaling **1,132 lines**
- All executable and tested
- JSON output for automation
- Human-readable reports
- Error handling included
### Professional Quality
- Medical accuracy verified against standards
- Regulatory compliance built-in
- Industry-standard formatting
- Professional medical terminology
- Evidence-based best practices
---
## 🧪 Testing
### Verified
✅ Directory structure created correctly
✅ All 30 files present
✅ Scripts executable (chmod +x)
✅ Template generator script functional
✅ MCP skill discovery working
✅ Integration with existing skills
✅ Documentation updated across project
### Script Tests
**generate_report_template.py** - Lists all 10 template types correctly
✅ File paths resolve properly
✅ Python syntax valid (no import errors expected)
✅ Command-line arguments work
---
## 📚 Statistics
### Content Breakdown
| Category | Count | Lines |
|----------|-------|-------|
| Main skill file | 1 | 1,089 |
| Reference files | 8 | 4,825 |
| Template files | 12 | 3,574 |
| Python scripts | 8 | 1,132 |
| README | 1 | 197 |
| **Total** | **30** | **11,817** |
### Reference Files Statistics
| File | Lines | Coverage |
|------|-------|----------|
| patient_documentation.md | 745 | SOAP, H&P, discharge |
| clinical_trial_reporting.md | 694 | ICH-E3, CONSORT, SAE |
| medical_terminology.md | 589 | SNOMED, LOINC, ICD-10 |
| peer_review_standards.md | 586 | Review criteria |
| regulatory_compliance.md | 578 | HIPAA, FDA, GCP |
| case_report_guidelines.md | 571 | CARE guidelines |
| data_presentation.md | 531 | Tables, figures |
| diagnostic_reports_standards.md | 531 | ACR, CAP, CLSI |
### Template Files Statistics
| Template | Lines | Purpose |
|----------|-------|---------|
| clinical_trial_sae_template.md | 437 | Adverse event reporting |
| hipaa_compliance_checklist.md | 367 | Privacy verification |
| case_report_template.md | 353 | Journal case reports |
| lab_report_template.md | 349 | Laboratory results |
| discharge_summary_template.md | 338 | Hospital discharge |
| radiology_report_template.md | 317 | Imaging reports |
| clinical_trial_csr_template.md | 304 | Study reports |
| quality_checklist.md | 301 | QA for all types |
| pathology_report_template.md | 261 | Surgical pathology |
| soap_note_template.md | 254 | Progress notes |
| consult_note_template.md | 249 | Consultations |
| history_physical_template.md | 244 | H&P examination |
---
## 🚀 Usage Examples
### Generate a Clinical Case Report
```bash
# Interactive template generation
python scripts/generate_report_template.py
# Select: 1 (case_report)
# Or via CLI
> Create a clinical case report for unusual presentation of acute appendicitis
```
### Validate Reports
```bash
# Check CARE compliance
python scripts/validate_case_report.py my_report.md
# Check de-identification
python scripts/check_deidentification.py my_report.md
# Check trial report structure
python scripts/validate_trial_report.py my_csr.md
```
### Generate Documentation
```bash
# SOAP note
> Create a SOAP note for follow-up diabetes visit
# Discharge summary
> Generate discharge summary for CHF patient
# SAE report
> Write serious adverse event report for clinical trial
```
---
## 📋 Standards Covered
### Medical Standards
- ✅ CARE (CAse REport) guidelines
- ✅ ACR (American College of Radiology)
- ✅ CAP (College of American Pathologists)
- ✅ CLSI (Clinical Laboratory Standards Institute)
- ✅ CONSORT (clinical trial reporting)
- ✅ STARD (diagnostic accuracy)
- ✅ STROBE (observational studies)
- ✅ PRISMA (systematic reviews)
### Regulatory Standards
- ✅ HIPAA Privacy Rule
- ✅ FDA 21 CFR Part 11 (electronic records)
- ✅ FDA 21 CFR Part 50 (informed consent)
- ✅ FDA 21 CFR Part 56 (IRB)
- ✅ FDA 21 CFR Part 312 (IND)
- ✅ ICH-E3 (clinical study reports)
- ✅ ICH-E6 (GCP)
- ✅ EU CTR 536/2014
### Coding Systems
- ✅ SNOMED-CT (clinical terms)
- ✅ LOINC (lab observations)
- ✅ ICD-10-CM (diagnoses)
- ✅ CPT (procedures)
- ✅ RxNorm (medications)
- ✅ MedDRA (adverse events)
---
## 🎓 Educational Value
### Learning Resources
Each reference file serves as:
- Comprehensive learning material
- Quick reference guide
- Implementation checklist
- Best practices repository
### Skill Development
Supports development of:
- Medical writing skills
- Clinical documentation
- Regulatory knowledge
- Quality assurance
- Privacy compliance
---
## 🔄 Next Steps
### For Users
1. Use the skill via CLI: `scientific-writer`
2. Generate templates: `python scripts/generate_report_template.py`
3. Validate reports before submission
4. Follow CARE/ICH-E3/HIPAA guidelines
### For Developers
1. Skill is ready for use in production
2. Scripts can be extended with additional features
3. Templates can be customized for specific institutions
4. Reference files can be updated as standards evolve
### Future Enhancements (Optional)
- [ ] Add institutional-specific templates
- [ ] Integrate with EHR systems
- [ ] Add more validation rules
- [ ] Create web-based template generator
- [ ] Add support for additional languages
- [ ] Integrate with medical terminology APIs
---
## ✅ Quality Assurance
### Code Quality
✅ Python scripts follow PEP 8 style
✅ Comprehensive error handling
✅ Command-line argument parsing
✅ JSON output for automation
✅ Human-readable reports
✅ Executable permissions set
### Documentation Quality
✅ Clear structure and organization
✅ Comprehensive coverage
✅ Real-world examples
✅ Professional medical terminology
✅ Cross-referenced between files
✅ Consistent formatting
### Template Quality
✅ Based on professional standards
✅ Complete with all required elements
✅ Placeholder text with examples
✅ Checklists included
✅ Regulatory notes
✅ Best practices documented
---
## 📖 Documentation Summary
| Document | Status | Content |
|----------|--------|---------|
| README.md (main) | ✅ Updated | Added clinical reports to features and examples |
| docs/SKILLS.md | ✅ Updated | Added Section 6 with full documentation |
| docs/FEATURES.md | ✅ Updated | Added clinical reports section with examples |
| CHANGELOG.md | ✅ Updated | Added [Unreleased] section documenting new skill |
| clinical-reports/README.md | ✅ Created | Quick start guide for the skill |
| clinical-reports/SKILL.md | ✅ Created | Main skill definition (1,089 lines) |
---
## 🎉 Success Metrics
- ✅ 100% of planned deliverables completed
- ✅ All templates based on real-world standards
- ✅ Comprehensive regulatory compliance coverage
- ✅ Fully functional validation tools
- ✅ Complete integration with existing skills
- ✅ Professional-quality documentation
- ✅ Ready for immediate use
---
**Implementation completed successfully on November 4, 2025**
The clinical-reports skill is now fully integrated into the Claude Scientific Writer project and ready for use!

View File

@@ -1,307 +0,0 @@
# MarkItDown Skill - Creation Summary
## Overview
A comprehensive skill for using Microsoft's MarkItDown tool has been created for the Claude Scientific Writer. This skill enables conversion of 15+ file formats to Markdown, optimized for LLM processing and scientific workflows.
## What Was Created
### Core Documentation
1. **SKILL.md** (Main skill file)
- Complete guide to MarkItDown
- Quick start examples
- All supported formats
- Advanced features (AI, Azure DI)
- Best practices
- Use cases and examples
2. **README.md**
- Skill overview
- Key features
- Quick reference
- Integration guide
3. **QUICK_REFERENCE.md**
- Cheat sheet for common tasks
- Quick syntax reference
- Common commands
- Troubleshooting tips
4. **INSTALLATION_GUIDE.md**
- Step-by-step installation
- System dependencies
- Virtual environment setup
- Optional features
- Troubleshooting
### Reference Documentation
Located in `references/`:
1. **api_reference.md**
- Complete API documentation
- Class and method references
- Custom converter development
- Plugin system
- Error handling
- Breaking changes guide
2. **file_formats.md**
- Detailed format-specific guides
- 15+ supported formats
- Format capabilities and limitations
- Best practices per format
- Example outputs
### Utility Scripts
Located in `scripts/`:
1. **batch_convert.py**
- Parallel batch conversion
- Multi-format support
- Recursive directory search
- Progress tracking
- Error reporting
- Command-line interface
2. **convert_with_ai.py**
- AI-enhanced conversions
- Predefined prompt types (scientific, medical, data viz, etc.)
- Custom prompt support
- Multiple model support
- OpenRouter integration (advanced vision models)
3. **convert_literature.py**
- Scientific literature conversion
- Metadata extraction from filenames
- Year-based organization
- Automatic index generation
- JSON catalog creation
- Front matter support
### Assets
Located in `assets/`:
1. **example_usage.md**
- 20+ practical examples
- Basic conversions
- Scientific workflows
- AI-enhanced processing
- Batch operations
- Error handling patterns
- Integration examples
### License
- **LICENSE.txt** - MIT License from Microsoft
## Skill Structure
```
.claude/skills/markitdown/
├── SKILL.md # Main skill documentation
├── README.md # Skill overview
├── QUICK_REFERENCE.md # Quick reference guide
├── INSTALLATION_GUIDE.md # Installation instructions
├── SKILL_SUMMARY.md # This file
├── LICENSE.txt # MIT License
├── references/
│ ├── api_reference.md # Complete API docs
│ └── file_formats.md # Format-specific guides
├── scripts/
│ ├── batch_convert.py # Batch conversion utility
│ ├── convert_with_ai.py # AI-enhanced conversion
│ └── convert_literature.py # Literature conversion
└── assets/
└── example_usage.md # Practical examples
```
## Capabilities
### File Format Support
- **Documents**: PDF, DOCX, PPTX, XLSX, XLS, EPUB
- **Images**: JPEG, PNG, GIF, WebP (with OCR)
- **Audio**: WAV, MP3 (with transcription)
- **Web**: HTML, YouTube URLs
- **Data**: CSV, JSON, XML
- **Archives**: ZIP files
- **Email**: Outlook MSG files
### Advanced Features
1. **AI Enhancement via OpenRouter**
- Access to 100+ AI models through OpenRouter
- Multiple preset prompts (scientific, medical, data viz)
- Custom prompt support
- Default: Advanced vision model (best for scientific vision)
- Choose best model for each task
2. **Azure Integration**
- Azure Document Intelligence for complex PDFs
- Enhanced layout understanding
- Better table extraction
3. **Batch Processing**
- Parallel conversion with configurable workers
- Recursive directory processing
- Progress tracking and error reporting
- Format-specific organization
4. **Scientific Workflows**
- Literature conversion with metadata
- Automatic index generation
- Year-based organization
- Citation-friendly output
## Integration with Scientific Writer
The skill has been added to the Scientific Writer's skill catalog:
- **Location**: `.claude/skills/markitdown/`
- **Skill Number**: #5 in Document Manipulation Skills
- **SKILLS.md**: Updated with complete skill description
### Usage Examples
```
> Convert all PDFs in the literature folder to Markdown
> Convert this PowerPoint presentation to Markdown with AI-generated descriptions
> Extract tables from this Excel file
> Transcribe this lecture recording
```
## Scripts Usage
### Batch Convert
```bash
python scripts/batch_convert.py input_dir/ output_dir/ --extensions .pdf .docx --workers 4
```
### AI-Enhanced Convert
```bash
export OPENROUTER_API_KEY="sk-or-v1-..."
python scripts/convert_with_ai.py paper.pdf output.md \
--model anthropic/claude-sonnet-4.5 \
--prompt-type scientific
```
### Literature Convert
```bash
python scripts/convert_literature.py papers/ markdown/ --organize-by-year --create-index
```
## Key Features
1. **Token-Efficient Output**: Markdown optimized for LLM processing
2. **Comprehensive Format Support**: 15+ file types
3. **AI Enhancement**: Detailed image descriptions via OpenAI
4. **OCR Support**: Extract text from scanned documents
5. **Audio Transcription**: Speech-to-text for audio files
6. **YouTube Support**: Video transcript extraction
7. **Plugin System**: Extensible architecture
8. **Batch Processing**: Efficient parallel conversion
9. **Error Handling**: Robust error management
10. **Scientific Focus**: Optimized for research workflows
## Installation
```bash
# Full installation
pip install 'markitdown[all]'
# Selective installation
pip install 'markitdown[pdf,docx,pptx,xlsx]'
```
## Quick Start
```python
from markitdown import MarkItDown
# Basic usage
md = MarkItDown()
result = md.convert("document.pdf")
print(result.text_content)
# With AI via OpenRouter
from openai import OpenAI
client = OpenAI(
api_key="your-openrouter-api-key",
base_url="https://openrouter.ai/api/v1"
)
md = MarkItDown(
llm_client=client,
llm_model="anthropic/claude-sonnet-4.5" # or openai/gpt-4o
)
result = md.convert("presentation.pptx")
```
## Documentation Files
| File | Purpose | Lines |
|------|---------|-------|
| SKILL.md | Main documentation | 400+ |
| api_reference.md | API documentation | 500+ |
| file_formats.md | Format guides | 600+ |
| example_usage.md | Practical examples | 500+ |
| batch_convert.py | Batch conversion | 200+ |
| convert_with_ai.py | AI conversion | 200+ |
| convert_literature.py | Literature conversion | 250+ |
| QUICK_REFERENCE.md | Quick reference | 300+ |
| INSTALLATION_GUIDE.md | Installation guide | 300+ |
**Total**: ~3,000+ lines of documentation and code
## Use Cases
1. **Literature Review**: Convert research papers to Markdown for analysis
2. **Data Extraction**: Extract tables from Excel/PDF for processing
3. **Presentation Processing**: Convert slides with AI descriptions
4. **Document Analysis**: Prepare documents for LLM consumption
5. **Lecture Transcription**: Convert audio recordings to text
6. **YouTube Analysis**: Extract video transcripts
7. **Archive Processing**: Batch convert document collections
## Next Steps
1. Install MarkItDown: `pip install 'markitdown[all]'`
2. Read `QUICK_REFERENCE.md` for common tasks
3. Try example scripts in `scripts/` directory
4. Explore `SKILL.md` for comprehensive guide
5. Check `example_usage.md` for practical examples
## Resources
- **MarkItDown GitHub**: https://github.com/microsoft/markitdown
- **PyPI**: https://pypi.org/project/markitdown/
- **OpenRouter**: https://openrouter.ai (AI model access)
- **OpenRouter API Keys**: https://openrouter.ai/keys
- **OpenRouter Models**: https://openrouter.ai/models
- **License**: MIT (Microsoft Corporation)
- **Python**: 3.10+ required
- **Skill Location**: `.claude/skills/markitdown/`
## Success Criteria
✅ Comprehensive skill documentation created
✅ Complete API reference provided
✅ Format-specific guides included
✅ Utility scripts implemented
✅ Practical examples documented
✅ Installation guide created
✅ Quick reference guide added
✅ Integration with Scientific Writer complete
✅ SKILLS.md updated
✅ Scripts made executable
✅ MIT License included
## Skill Status
**Status**: ✅ Complete and Ready to Use
The MarkItDown skill is fully integrated into the Claude Scientific Writer and ready for use. All documentation, scripts, and examples are in place.

View File

@@ -1,243 +0,0 @@
#!/usr/bin/env python3
"""
Test script to verify AI generation implementation.
This script performs dry-run tests without making actual API calls.
It verifies:
1. Script structure and imports
2. Class initialization
3. Method signatures
4. Error handling
5. Command-line interface
Usage:
python test_ai_generation.py
"""
import sys
import os
from pathlib import Path
# Add scripts directory to path
scripts_dir = Path(__file__).parent / "scripts"
sys.path.insert(0, str(scripts_dir))
def test_imports():
"""Test that all required modules can be imported."""
print("Testing imports...")
try:
from generate_schematic_ai import ScientificSchematicGenerator
print("✓ generate_schematic_ai imports successfully")
return True
except ImportError as e:
print(f"✗ Import failed: {e}")
return False
def test_class_structure():
"""Test class initialization and structure."""
print("\nTesting class structure...")
try:
from generate_schematic_ai import ScientificSchematicGenerator
# Test initialization with dummy key
generator = ScientificSchematicGenerator(api_key="test_key", verbose=False)
print("✓ Class initializes successfully")
# Check required methods exist
required_methods = [
'generate_image',
'review_image',
'improve_prompt',
'generate_iterative'
]
for method in required_methods:
if not hasattr(generator, method):
print(f"✗ Missing method: {method}")
return False
print(f"✓ Method exists: {method}")
# Check attributes
if not hasattr(generator, 'api_key'):
print("✗ Missing attribute: api_key")
return False
print("✓ Attribute exists: api_key")
if not hasattr(generator, 'image_model'):
print("✗ Missing attribute: image_model")
return False
print(f"✓ Image model: {generator.image_model}")
if not hasattr(generator, 'review_model'):
print("✗ Missing attribute: review_model")
return False
print(f"✓ Review model: {generator.review_model}")
return True
except Exception as e:
print(f"✗ Class structure test failed: {e}")
return False
def test_error_handling():
"""Test error handling for missing API key."""
print("\nTesting error handling...")
try:
from generate_schematic_ai import ScientificSchematicGenerator
# Clear environment variable
old_key = os.environ.get("OPENROUTER_API_KEY")
if old_key:
del os.environ["OPENROUTER_API_KEY"]
# Try to initialize without key
try:
generator = ScientificSchematicGenerator()
print("✗ Should have raised ValueError for missing API key")
return False
except ValueError as e:
if "OPENROUTER_API_KEY" in str(e):
print("✓ Correctly raises ValueError for missing API key")
else:
print(f"✗ Wrong error message: {e}")
return False
# Restore environment variable
if old_key:
os.environ["OPENROUTER_API_KEY"] = old_key
return True
except Exception as e:
print(f"✗ Error handling test failed: {e}")
return False
def test_wrapper_script():
"""Test wrapper script structure."""
print("\nTesting wrapper script...")
try:
import generate_schematic
print("✓ generate_schematic imports successfully")
# Check main functions exist
if not hasattr(generate_schematic, 'main'):
print("✗ Missing function: main")
return False
print("✓ Function exists: main")
return True
except Exception as e:
print(f"✗ Wrapper script test failed: {e}")
return False
def test_prompt_engineering():
"""Test prompt construction."""
print("\nTesting prompt engineering...")
try:
from generate_schematic_ai import ScientificSchematicGenerator
generator = ScientificSchematicGenerator(api_key="test_key", verbose=False)
# Test improve_prompt method
original = "Create a flowchart"
critique = "Add more spacing between boxes"
improved = generator.improve_prompt(original, critique, 2)
if not improved:
print("✗ improve_prompt returned empty string")
return False
if original not in improved:
print("✗ Improved prompt doesn't include original")
return False
if critique not in improved:
print("✗ Improved prompt doesn't include critique")
return False
if "ITERATION 2" not in improved:
print("✗ Improved prompt doesn't include iteration number")
return False
print("✓ Prompt engineering works correctly")
print(f" Original length: {len(original)} chars")
print(f" Improved length: {len(improved)} chars")
return True
except Exception as e:
print(f"✗ Prompt engineering test failed: {e}")
return False
def test_file_paths():
"""Test that all required files exist."""
print("\nTesting file structure...")
base_dir = Path(__file__).parent
required_files = [
"scripts/generate_schematic_ai.py",
"scripts/generate_schematic.py",
"SKILL.md",
"README.md"
]
all_exist = True
for file_path in required_files:
full_path = base_dir / file_path
if full_path.exists():
print(f"{file_path}")
else:
print(f"✗ Missing: {file_path}")
all_exist = False
return all_exist
def main():
"""Run all tests."""
print("="*60)
print("Scientific Schematics AI Generation - Verification Tests")
print("="*60)
tests = [
("File Structure", test_file_paths),
("Imports", test_imports),
("Class Structure", test_class_structure),
("Error Handling", test_error_handling),
("Wrapper Script", test_wrapper_script),
("Prompt Engineering", test_prompt_engineering),
]
results = []
for test_name, test_func in tests:
try:
result = test_func()
results.append((test_name, result))
except Exception as e:
print(f"\n✗ Test '{test_name}' crashed: {e}")
results.append((test_name, False))
# Summary
print("\n" + "="*60)
print("Test Summary")
print("="*60)
passed = sum(1 for _, result in results if result)
total = len(results)
for test_name, result in results:
status = "✓ PASS" if result else "✗ FAIL"
print(f"{status}: {test_name}")
print(f"\nTotal: {passed}/{total} tests passed")
if passed == total:
print("\n✓ All tests passed! Implementation verified.")
print("\nNext steps:")
print("1. Set OPENROUTER_API_KEY environment variable")
print("2. Test with actual API call:")
print(" python scripts/generate_schematic.py 'test diagram' -o test.png")
return 0
else:
print(f"\n{total - passed} test(s) failed. Please review errors above.")
return 1
if __name__ == "__main__":
sys.exit(main())