Add more scientific skills

This commit is contained in:
Timothy Kassis
2025-10-19 14:12:02 -07:00
parent 78d5ac2b56
commit 660c8574d0
210 changed files with 88957 additions and 1 deletions

View File

@@ -0,0 +1,635 @@
# Biomni API Reference
This document provides comprehensive API documentation for the Biomni biomedical AI agent system.
## Core Classes
### A1 Agent
The primary agent class for executing biomedical research tasks.
#### Initialization
```python
from biomni.agent import A1
agent = A1(
path='./data', # Path to biomedical knowledge base
llm='claude-sonnet-4-20250514', # LLM model identifier
timeout=None, # Optional timeout in seconds
verbose=True # Enable detailed logging
)
```
**Parameters:**
- `path` (str, required): Directory path where the biomedical knowledge base is stored or will be downloaded. First-time initialization will download ~11GB of data.
- `llm` (str, optional): LLM model identifier. Defaults to the value in `default_config.llm`. Supports multiple providers (see LLM Providers section).
- `timeout` (int, optional): Maximum execution time in seconds for agent operations. Overrides `default_config.timeout_seconds`.
- `verbose` (bool, optional): Enable verbose logging for debugging. Default: True.
**Returns:** A1 agent instance ready for task execution.
#### Methods
##### `go(task_description: str) -> None`
Execute a biomedical research task autonomously.
```python
agent.go("Analyze this scRNA-seq dataset and identify cell types")
```
**Parameters:**
- `task_description` (str, required): Natural language description of the biomedical task to execute. Be specific about:
- Data location and format
- Desired analysis or output
- Any specific methods or parameters
- Expected results format
**Behavior:**
1. Decomposes the task into executable steps
2. Retrieves relevant biomedical knowledge from the data lake
3. Generates and executes Python/R code
4. Provides results and visualizations
5. Handles errors and retries with refinement
**Notes:**
- Executes code with system privileges - use in sandboxed environments
- Long-running tasks may require timeout adjustments
- Intermediate results are displayed during execution
##### `save_conversation_history(output_path: str, format: str = 'pdf') -> None`
Export conversation history and execution trace as a formatted report.
```python
agent.save_conversation_history(
output_path='./reports/analysis_log.pdf',
format='pdf'
)
```
**Parameters:**
- `output_path` (str, required): File path for the output report
- `format` (str, optional): Output format. Options: 'pdf', 'markdown'. Default: 'pdf'
**Requirements:**
- For PDF: Install one of: WeasyPrint, markdown2pdf, or Pandoc
```bash
pip install weasyprint # Recommended
# or
pip install markdown2pdf
# or install Pandoc system-wide
```
**Report Contents:**
- Task description and parameters
- Retrieved biomedical knowledge
- Generated code with execution traces
- Results, visualizations, and outputs
- Timestamps and execution metadata
##### `add_mcp(config_path: str) -> None`
Add Model Context Protocol (MCP) tools to extend agent capabilities.
```python
agent.add_mcp(config_path='./mcp_tools_config.json')
```
**Parameters:**
- `config_path` (str, required): Path to MCP configuration JSON file
**MCP Configuration Format:**
```json
{
"tools": [
{
"name": "tool_name",
"endpoint": "http://localhost:8000/tool",
"description": "Tool description for LLM",
"parameters": {
"param1": "string",
"param2": "integer"
}
}
]
}
```
**Use Cases:**
- Connect to laboratory information systems
- Integrate proprietary databases
- Access specialized computational resources
- Link to institutional data repositories
## Configuration
### default_config
Global configuration object for Biomni settings.
```python
from biomni.config import default_config
```
#### Attributes
##### `llm: str`
Default LLM model identifier for all agent instances.
```python
default_config.llm = "claude-sonnet-4-20250514"
```
**Supported Models:**
**Anthropic:**
- `claude-sonnet-4-20250514` (Recommended)
- `claude-opus-4-20250514`
- `claude-3-5-sonnet-20241022`
- `claude-3-opus-20240229`
**OpenAI:**
- `gpt-4o`
- `gpt-4`
- `gpt-4-turbo`
- `gpt-3.5-turbo`
**Azure OpenAI:**
- `azure/gpt-4`
- `azure/<deployment-name>`
**Google Gemini:**
- `gemini/gemini-pro`
- `gemini/gemini-1.5-pro`
**Groq:**
- `groq/llama-3.1-70b-versatile`
- `groq/mixtral-8x7b-32768`
**Ollama (Local):**
- `ollama/llama3`
- `ollama/mistral`
- `ollama/<model-name>`
**AWS Bedrock:**
- `bedrock/anthropic.claude-v2`
- `bedrock/anthropic.claude-3-sonnet`
**Custom/Biomni-R0:**
- `openai/biomni-r0` (requires local SGLang deployment)
##### `timeout_seconds: int`
Default timeout for agent operations in seconds.
```python
default_config.timeout_seconds = 1200 # 20 minutes
```
**Recommended Values:**
- Simple tasks (QC, basic analysis): 300-600 seconds
- Medium tasks (differential expression, clustering): 600-1200 seconds
- Complex tasks (full pipelines, ML models): 1200-3600 seconds
- Very complex tasks: 3600+ seconds
##### `data_path: str`
Default path to biomedical knowledge base.
```python
default_config.data_path = "/path/to/biomni/data"
```
**Storage Requirements:**
- Initial download: ~11GB
- Extracted size: ~15GB
- Additional working space: ~5-10GB recommended
##### `api_base: str`
Custom API endpoint for LLM providers (advanced usage).
```python
# For local Biomni-R0 deployment
default_config.api_base = "http://localhost:30000/v1"
# For custom OpenAI-compatible endpoints
default_config.api_base = "https://your-endpoint.com/v1"
```
##### `max_retries: int`
Number of retry attempts for failed operations.
```python
default_config.max_retries = 3
```
#### Methods
##### `reset() -> None`
Reset all configuration values to system defaults.
```python
default_config.reset()
```
## Database Query System
Biomni includes a retrieval-augmented generation (RAG) system for querying the biomedical knowledge base.
### Query Functions
#### `query_genes(query: str, top_k: int = 10) -> List[Dict]`
Query gene information from integrated databases.
```python
from biomni.database import query_genes
results = query_genes(
query="genes involved in p53 pathway",
top_k=20
)
```
**Parameters:**
- `query` (str): Natural language or gene identifier query
- `top_k` (int): Number of results to return
**Returns:** List of dictionaries containing:
- `gene_symbol`: Official gene symbol
- `gene_name`: Full gene name
- `description`: Functional description
- `pathways`: Associated biological pathways
- `go_terms`: Gene Ontology annotations
- `diseases`: Associated diseases
- `similarity_score`: Relevance score (0-1)
#### `query_proteins(query: str, top_k: int = 10) -> List[Dict]`
Query protein information from UniProt and other sources.
```python
from biomni.database import query_proteins
results = query_proteins(
query="kinase proteins in cell cycle",
top_k=15
)
```
**Returns:** List of dictionaries with protein metadata:
- `uniprot_id`: UniProt accession
- `protein_name`: Protein name
- `function`: Functional annotation
- `domains`: Protein domains
- `subcellular_location`: Cellular localization
- `similarity_score`: Relevance score
#### `query_drugs(query: str, top_k: int = 10) -> List[Dict]`
Query drug and compound information.
```python
from biomni.database import query_drugs
results = query_drugs(
query="FDA approved cancer drugs targeting EGFR",
top_k=10
)
```
**Returns:** Drug information including:
- `drug_name`: Common name
- `drugbank_id`: DrugBank identifier
- `indication`: Therapeutic indication
- `mechanism`: Mechanism of action
- `targets`: Molecular targets
- `approval_status`: Regulatory status
- `smiles`: Chemical structure (SMILES notation)
#### `query_diseases(query: str, top_k: int = 10) -> List[Dict]`
Query disease information from clinical databases.
```python
from biomni.database import query_diseases
results = query_diseases(
query="autoimmune diseases affecting joints",
top_k=10
)
```
**Returns:** Disease data:
- `disease_name`: Standard disease name
- `disease_id`: Ontology identifier
- `symptoms`: Clinical manifestations
- `associated_genes`: Genetic associations
- `prevalence`: Epidemiological data
#### `query_pathways(query: str, top_k: int = 10) -> List[Dict]`
Query biological pathways from KEGG, Reactome, and other sources.
```python
from biomni.database import query_pathways
results = query_pathways(
query="immune response signaling pathways",
top_k=15
)
```
**Returns:** Pathway information:
- `pathway_name`: Pathway name
- `pathway_id`: Database identifier
- `genes`: Genes in pathway
- `description`: Functional description
- `source`: Database source (KEGG, Reactome, etc.)
## Data Structures
### TaskResult
Result object returned by complex agent operations.
```python
class TaskResult:
success: bool # Whether task completed successfully
output: Any # Task output (varies by task)
code: str # Generated code
execution_time: float # Execution time in seconds
error: Optional[str] # Error message if failed
metadata: Dict # Additional metadata
```
### BiomedicalEntity
Base class for biomedical entities in the knowledge base.
```python
class BiomedicalEntity:
entity_id: str # Unique identifier
entity_type: str # Type (gene, protein, drug, etc.)
name: str # Entity name
description: str # Description
attributes: Dict # Additional attributes
references: List[str] # Literature references
```
## Utility Functions
### `download_data(path: str, force: bool = False) -> None`
Manually download or update the biomedical knowledge base.
```python
from biomni.utils import download_data
download_data(
path='./data',
force=True # Force re-download
)
```
### `validate_environment() -> Dict[str, bool]`
Check if the environment is properly configured.
```python
from biomni.utils import validate_environment
status = validate_environment()
# Returns: {
# 'conda_env': True,
# 'api_keys': True,
# 'data_available': True,
# 'dependencies': True
# }
```
### `list_available_models() -> List[str]`
Get a list of available LLM models based on configured API keys.
```python
from biomni.utils import list_available_models
models = list_available_models()
# Returns: ['claude-sonnet-4-20250514', 'gpt-4o', ...]
```
## Error Handling
### Common Exceptions
#### `BiomniConfigError`
Raised when configuration is invalid or incomplete.
```python
from biomni.exceptions import BiomniConfigError
try:
agent = A1(path='./data')
except BiomniConfigError as e:
print(f"Configuration error: {e}")
```
#### `BiomniExecutionError`
Raised when code generation or execution fails.
```python
from biomni.exceptions import BiomniExecutionError
try:
agent.go("invalid task")
except BiomniExecutionError as e:
print(f"Execution failed: {e}")
# Access failed code: e.code
# Access error details: e.details
```
#### `BiomniDataError`
Raised when knowledge base or data access fails.
```python
from biomni.exceptions import BiomniDataError
try:
results = query_genes("unknown query format")
except BiomniDataError as e:
print(f"Data access error: {e}")
```
#### `BiomniTimeoutError`
Raised when operations exceed timeout limit.
```python
from biomni.exceptions import BiomniTimeoutError
try:
agent.go("very complex long-running task")
except BiomniTimeoutError as e:
print(f"Task timed out after {e.duration} seconds")
# Partial results may be available: e.partial_results
```
## Best Practices
### Efficient Knowledge Retrieval
Pre-query databases for relevant context before complex tasks:
```python
from biomni.database import query_genes, query_pathways
# Gather relevant biological context first
genes = query_genes("cell cycle genes", top_k=50)
pathways = query_pathways("cell cycle regulation", top_k=20)
# Then execute task with enriched context
agent.go(f"""
Analyze the cell cycle progression in this dataset.
Focus on these genes: {[g['gene_symbol'] for g in genes]}
Consider these pathways: {[p['pathway_name'] for p in pathways]}
""")
```
### Error Recovery
Implement robust error handling for production workflows:
```python
from biomni.exceptions import BiomniExecutionError, BiomniTimeoutError
max_attempts = 3
for attempt in range(max_attempts):
try:
agent.go("complex biomedical task")
break
except BiomniTimeoutError:
# Increase timeout and retry
default_config.timeout_seconds *= 2
print(f"Timeout, retrying with {default_config.timeout_seconds}s timeout")
except BiomniExecutionError as e:
# Refine task based on error
print(f"Execution failed: {e}, refining task...")
# Optionally modify task description
else:
print("Task failed after max attempts")
```
### Memory Management
For large-scale analyses, manage memory explicitly:
```python
import gc
# Process datasets in chunks
for chunk_id in range(num_chunks):
agent.go(f"Process data chunk {chunk_id} located at data/chunk_{chunk_id}.h5ad")
# Force garbage collection between chunks
gc.collect()
# Save intermediate results
agent.save_conversation_history(f"./reports/chunk_{chunk_id}.pdf")
```
### Reproducibility
Ensure reproducible analyses by:
1. **Fixing random seeds:**
```python
agent.go("Set random seed to 42 for all analyses, then perform clustering...")
```
2. **Logging configuration:**
```python
import json
config_log = {
'llm': default_config.llm,
'timeout': default_config.timeout_seconds,
'data_path': default_config.data_path,
'timestamp': datetime.now().isoformat()
}
with open('config_log.json', 'w') as f:
json.dump(config_log, f, indent=2)
```
3. **Saving execution traces:**
```python
# Always save detailed reports
agent.save_conversation_history('./reports/full_analysis.pdf')
```
## Performance Optimization
### Model Selection Strategy
Choose models based on task characteristics:
```python
# For exploratory, simple tasks
default_config.llm = "gpt-3.5-turbo" # Fast, cost-effective
# For standard biomedical analyses
default_config.llm = "claude-sonnet-4-20250514" # Recommended
# For complex reasoning and hypothesis generation
default_config.llm = "claude-opus-4-20250514" # Highest quality
# For specialized biological reasoning
default_config.llm = "openai/biomni-r0" # Requires local deployment
```
### Timeout Tuning
Set appropriate timeouts based on task complexity:
```python
# Quick queries and simple analyses
agent = A1(path='./data', timeout=300)
# Standard workflows
agent = A1(path='./data', timeout=1200)
# Full pipelines with ML training
agent = A1(path='./data', timeout=3600)
```
### Caching and Reuse
Reuse agent instances for multiple related tasks:
```python
# Create agent once
agent = A1(path='./data', llm='claude-sonnet-4-20250514')
# Execute multiple related tasks
tasks = [
"Load and QC the scRNA-seq dataset",
"Perform clustering with resolution 0.5",
"Identify marker genes for each cluster",
"Annotate cell types based on markers"
]
for task in tasks:
agent.go(task)
# Save complete workflow
agent.save_conversation_history('./reports/full_workflow.pdf')
```