Add more scientific skills

This commit is contained in:
Timothy Kassis
2025-10-19 14:12:02 -07:00
parent 78d5ac2b56
commit 660c8574d0
210 changed files with 88957 additions and 1 deletions

View File

@@ -0,0 +1,625 @@
# Scikit-learn Quick Reference
## Essential Imports
```python
# Core
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split, cross_val_score, GridSearchCV
from sklearn.pipeline import Pipeline, make_pipeline
from sklearn.compose import ColumnTransformer
# Preprocessing
from sklearn.preprocessing import (
StandardScaler, MinMaxScaler, RobustScaler,
OneHotEncoder, OrdinalEncoder, LabelEncoder,
PolynomialFeatures
)
from sklearn.impute import SimpleImputer
# Models - Classification
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import (
RandomForestClassifier,
GradientBoostingClassifier,
HistGradientBoostingClassifier
)
from sklearn.svm import SVC
from sklearn.neighbors import KNeighborsClassifier
# Models - Regression
from sklearn.linear_model import LinearRegression, Ridge, Lasso
from sklearn.ensemble import (
RandomForestRegressor,
GradientBoostingRegressor,
HistGradientBoostingRegressor
)
# Clustering
from sklearn.cluster import KMeans, DBSCAN, AgglomerativeClustering
from sklearn.mixture import GaussianMixture
# Dimensionality Reduction
from sklearn.decomposition import PCA, NMF, TruncatedSVD
from sklearn.manifold import TSNE
# Metrics
from sklearn.metrics import (
accuracy_score, precision_score, recall_score, f1_score,
confusion_matrix, classification_report,
mean_squared_error, r2_score, mean_absolute_error
)
```
## Basic Workflow Template
### Classification
```python
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report
# Split data
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=42, stratify=y
)
# Scale features
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
# Train model
model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(X_train_scaled, y_train)
# Predict and evaluate
y_pred = model.predict(X_test_scaled)
print(classification_report(y_test, y_pred))
```
### Regression
```python
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error, r2_score
# Split data
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=42
)
# Scale features
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
# Train model
model = RandomForestRegressor(n_estimators=100, random_state=42)
model.fit(X_train_scaled, y_train)
# Predict and evaluate
y_pred = model.predict(X_test_scaled)
print(f"RMSE: {mean_squared_error(y_test, y_pred, squared=False):.3f}")
print(f"R²: {r2_score(y_test, y_pred):.3f}")
```
### With Pipeline (Recommended)
```python
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split, cross_val_score
# Create pipeline
pipeline = Pipeline([
('scaler', StandardScaler()),
('classifier', RandomForestClassifier(n_estimators=100, random_state=42))
])
# Split and train
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=42
)
pipeline.fit(X_train, y_train)
# Evaluate
score = pipeline.score(X_test, y_test)
cv_scores = cross_val_score(pipeline, X_train, y_train, cv=5)
print(f"Test accuracy: {score:.3f}")
print(f"CV accuracy: {cv_scores.mean():.3f} (+/- {cv_scores.std():.3f})")
```
## Common Preprocessing Patterns
### Numeric Data
```python
from sklearn.preprocessing import StandardScaler
from sklearn.impute import SimpleImputer
from sklearn.pipeline import Pipeline
numeric_transformer = Pipeline([
('imputer', SimpleImputer(strategy='median')),
('scaler', StandardScaler())
])
```
### Categorical Data
```python
from sklearn.preprocessing import OneHotEncoder
from sklearn.impute import SimpleImputer
from sklearn.pipeline import Pipeline
categorical_transformer = Pipeline([
('imputer', SimpleImputer(strategy='constant', fill_value='missing')),
('onehot', OneHotEncoder(handle_unknown='ignore'))
])
```
### Mixed Data with ColumnTransformer
```python
from sklearn.compose import ColumnTransformer
numeric_features = ['age', 'income', 'credit_score']
categorical_features = ['country', 'occupation']
preprocessor = ColumnTransformer(
transformers=[
('num', numeric_transformer, numeric_features),
('cat', categorical_transformer, categorical_features)
])
# Complete pipeline
from sklearn.ensemble import RandomForestClassifier
pipeline = Pipeline([
('preprocessor', preprocessor),
('classifier', RandomForestClassifier())
])
```
## Model Selection Cheat Sheet
### Quick Decision Tree
```
Is it supervised?
├─ Yes
│ ├─ Predicting categories? → Classification
│ │ ├─ Start with: LogisticRegression (baseline)
│ │ ├─ Then try: RandomForestClassifier
│ │ └─ Best performance: HistGradientBoostingClassifier
│ └─ Predicting numbers? → Regression
│ ├─ Start with: LinearRegression/Ridge (baseline)
│ ├─ Then try: RandomForestRegressor
│ └─ Best performance: HistGradientBoostingRegressor
└─ No
├─ Grouping similar items? → Clustering
│ ├─ Know # clusters: KMeans
│ └─ Unknown # clusters: DBSCAN or HDBSCAN
├─ Reducing dimensions?
│ ├─ For preprocessing: PCA
│ └─ For visualization: t-SNE or UMAP
└─ Finding outliers? → IsolationForest or LocalOutlierFactor
```
### Algorithm Selection by Data Size
- **Small (<1K samples)**: Any algorithm
- **Medium (1K-100K)**: Random Forests, Gradient Boosting, Neural Networks
- **Large (>100K)**: SGDClassifier/Regressor, HistGradientBoosting, LinearSVC
### When to Scale Features
**Always scale**:
- SVM, Neural Networks
- K-Nearest Neighbors
- Linear/Logistic Regression (with regularization)
- PCA, LDA
- Any gradient descent algorithm
**Don't need to scale**:
- Tree-based (Decision Trees, Random Forests, Gradient Boosting)
- Naive Bayes
## Hyperparameter Tuning
### GridSearchCV
```python
from sklearn.model_selection import GridSearchCV
param_grid = {
'n_estimators': [100, 200, 500],
'max_depth': [10, 20, None],
'min_samples_split': [2, 5, 10]
}
grid_search = GridSearchCV(
RandomForestClassifier(random_state=42),
param_grid,
cv=5,
scoring='f1_weighted',
n_jobs=-1
)
grid_search.fit(X_train, y_train)
best_model = grid_search.best_estimator_
print(f"Best params: {grid_search.best_params_}")
```
### RandomizedSearchCV (Faster)
```python
from sklearn.model_selection import RandomizedSearchCV
from scipy.stats import randint, uniform
param_distributions = {
'n_estimators': randint(100, 1000),
'max_depth': randint(5, 50),
'min_samples_split': randint(2, 20)
}
random_search = RandomizedSearchCV(
RandomForestClassifier(random_state=42),
param_distributions,
n_iter=50, # Number of combinations to try
cv=5,
n_jobs=-1,
random_state=42
)
random_search.fit(X_train, y_train)
```
### Pipeline with GridSearchCV
```python
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.model_selection import GridSearchCV
pipeline = Pipeline([
('scaler', StandardScaler()),
('svm', SVC())
])
param_grid = {
'svm__C': [0.1, 1, 10],
'svm__kernel': ['rbf', 'linear'],
'svm__gamma': ['scale', 'auto']
}
grid = GridSearchCV(pipeline, param_grid, cv=5)
grid.fit(X_train, y_train)
```
## Cross-Validation
### Basic Cross-Validation
```python
from sklearn.model_selection import cross_val_score
scores = cross_val_score(model, X, y, cv=5, scoring='accuracy')
print(f"Accuracy: {scores.mean():.3f} (+/- {scores.std():.3f})")
```
### Multiple Metrics
```python
from sklearn.model_selection import cross_validate
scoring = ['accuracy', 'precision_weighted', 'recall_weighted', 'f1_weighted']
results = cross_validate(model, X, y, cv=5, scoring=scoring)
for metric in scoring:
scores = results[f'test_{metric}']
print(f"{metric}: {scores.mean():.3f} (+/- {scores.std():.3f})")
```
### Custom CV Strategies
```python
from sklearn.model_selection import StratifiedKFold, TimeSeriesSplit
# For imbalanced classification
cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)
# For time series
cv = TimeSeriesSplit(n_splits=5)
scores = cross_val_score(model, X, y, cv=cv)
```
## Common Metrics
### Classification
```python
from sklearn.metrics import (
accuracy_score, balanced_accuracy_score,
precision_score, recall_score, f1_score,
confusion_matrix, classification_report,
roc_auc_score
)
# Basic metrics
accuracy = accuracy_score(y_true, y_pred)
f1 = f1_score(y_true, y_pred, average='weighted')
# Comprehensive report
print(classification_report(y_true, y_pred))
# ROC AUC (requires probabilities)
y_proba = model.predict_proba(X_test)[:, 1]
auc = roc_auc_score(y_true, y_proba)
```
### Regression
```python
from sklearn.metrics import (
mean_squared_error,
mean_absolute_error,
r2_score
)
mse = mean_squared_error(y_true, y_pred)
rmse = mean_squared_error(y_true, y_pred, squared=False)
mae = mean_absolute_error(y_true, y_pred)
r2 = r2_score(y_true, y_pred)
print(f"RMSE: {rmse:.3f}")
print(f"MAE: {mae:.3f}")
print(f"R²: {r2:.3f}")
```
## Feature Engineering
### Polynomial Features
```python
from sklearn.preprocessing import PolynomialFeatures
poly = PolynomialFeatures(degree=2, include_bias=False)
X_poly = poly.fit_transform(X)
# [x1, x2] → [x1, x2, x1², x1·x2, x2²]
```
### Feature Selection
```python
from sklearn.feature_selection import (
SelectKBest, f_classif,
RFE,
SelectFromModel
)
# Univariate selection
selector = SelectKBest(f_classif, k=10)
X_selected = selector.fit_transform(X, y)
# Recursive feature elimination
from sklearn.ensemble import RandomForestClassifier
rfe = RFE(RandomForestClassifier(), n_features_to_select=10)
X_selected = rfe.fit_transform(X, y)
# Model-based selection
selector = SelectFromModel(
RandomForestClassifier(n_estimators=100),
threshold='median'
)
X_selected = selector.fit_transform(X, y)
```
### Feature Importance
```python
# Tree-based models
model = RandomForestClassifier()
model.fit(X_train, y_train)
importances = model.feature_importances_
# Visualize
import matplotlib.pyplot as plt
indices = np.argsort(importances)[::-1]
plt.bar(range(X.shape[1]), importances[indices])
plt.xticks(range(X.shape[1]), feature_names[indices], rotation=90)
plt.show()
# Permutation importance (works for any model)
from sklearn.inspection import permutation_importance
result = permutation_importance(model, X_test, y_test, n_repeats=10)
importances = result.importances_mean
```
## Clustering
### K-Means
```python
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
# Always scale for k-means
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# Fit k-means
kmeans = KMeans(n_clusters=3, random_state=42)
labels = kmeans.fit_predict(X_scaled)
# Evaluate
from sklearn.metrics import silhouette_score
score = silhouette_score(X_scaled, labels)
print(f"Silhouette score: {score:.3f}")
```
### Elbow Method
```python
inertias = []
K_range = range(2, 11)
for k in K_range:
kmeans = KMeans(n_clusters=k, random_state=42)
kmeans.fit(X_scaled)
inertias.append(kmeans.inertia_)
plt.plot(K_range, inertias, 'bo-')
plt.xlabel('k')
plt.ylabel('Inertia')
plt.show()
```
### DBSCAN
```python
from sklearn.cluster import DBSCAN
dbscan = DBSCAN(eps=0.5, min_samples=5)
labels = dbscan.fit_predict(X_scaled)
# -1 indicates noise/outliers
n_clusters = len(set(labels)) - (1 if -1 in labels else 0)
n_noise = list(labels).count(-1)
print(f"Clusters: {n_clusters}, Noise points: {n_noise}")
```
## Dimensionality Reduction
### PCA
```python
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
# Always scale before PCA
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# Specify n_components
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X_scaled)
# Or specify variance to retain
pca = PCA(n_components=0.95) # Keep 95% variance
X_pca = pca.fit_transform(X_scaled)
print(f"Explained variance: {pca.explained_variance_ratio_}")
print(f"Components needed: {pca.n_components_}")
```
### t-SNE (Visualization Only)
```python
from sklearn.manifold import TSNE
# Reduce to 50 dimensions with PCA first (recommended)
pca = PCA(n_components=50)
X_pca = pca.fit_transform(X_scaled)
# Apply t-SNE
tsne = TSNE(n_components=2, random_state=42, perplexity=30)
X_tsne = tsne.fit_transform(X_pca)
# Visualize
plt.scatter(X_tsne[:, 0], X_tsne[:, 1], c=y, cmap='viridis')
plt.colorbar()
plt.show()
```
## Saving and Loading Models
```python
import joblib
# Save model
joblib.dump(model, 'model.pkl')
# Save pipeline
joblib.dump(pipeline, 'pipeline.pkl')
# Load
model = joblib.load('model.pkl')
pipeline = joblib.load('pipeline.pkl')
# Use loaded model
y_pred = model.predict(X_new)
```
## Common Pitfalls and Solutions
### Data Leakage
**Wrong**: Fit on all data before split
```python
scaler = StandardScaler().fit(X)
X_train, X_test = train_test_split(scaler.transform(X))
```
**Correct**: Use pipeline or fit only on train
```python
X_train, X_test = train_test_split(X)
pipeline = Pipeline([('scaler', StandardScaler()), ('model', model)])
pipeline.fit(X_train, y_train)
```
### Not Scaling
**Wrong**: Using SVM without scaling
```python
svm = SVC()
svm.fit(X_train, y_train)
```
**Correct**: Scale for SVM
```python
pipeline = Pipeline([('scaler', StandardScaler()), ('svm', SVC())])
pipeline.fit(X_train, y_train)
```
### Wrong Metric for Imbalanced Data
**Wrong**: Using accuracy for 99:1 imbalance
```python
accuracy = accuracy_score(y_true, y_pred) # Can be misleading
```
**Correct**: Use appropriate metrics
```python
f1 = f1_score(y_true, y_pred, average='weighted')
balanced_acc = balanced_accuracy_score(y_true, y_pred)
```
### Not Using Stratification
**Wrong**: Random split for imbalanced data
```python
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
```
**Correct**: Stratify for imbalanced classes
```python
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, stratify=y
)
```
## Performance Tips
1. **Use n_jobs=-1** for parallel processing (RandomForest, GridSearchCV)
2. **Use HistGradientBoosting** for large datasets (>10K samples)
3. **Use MiniBatchKMeans** for large clustering tasks
4. **Use IncrementalPCA** for data that doesn't fit in memory
5. **Use sparse matrices** for high-dimensional sparse data (text)
6. **Cache transformers** in pipelines during grid search
7. **Use RandomizedSearchCV** instead of GridSearchCV for large parameter spaces
8. **Reduce dimensionality** with PCA before applying expensive algorithms