Improve the anndata skill

This commit is contained in:
Timothy Kassis
2025-11-03 16:09:01 -08:00
parent 094d5aa9f1
commit 6ddea4786e
9 changed files with 2448 additions and 1560 deletions

View File

@@ -1,527 +1,394 @@
--- ---
name: anndata name: anndata
description: "Manipulate AnnData objects for single-cell genomics. Load/save .h5ad files, manage obs/var metadata, layers, embeddings (PCA/UMAP), concatenate datasets, for scRNA-seq workflows." description: This skill should be used when working with annotated data matrices in Python, particularly for single-cell genomics analysis, managing experimental measurements with metadata, or handling large-scale biological datasets. Use when tasks involve AnnData objects, h5ad files, single-cell RNA-seq data, or integration with scanpy/scverse tools.
--- ---
# AnnData # AnnData
## Overview ## Overview
AnnData (Annotated Data) is Python's standard for storing and manipulating annotated data matrices, particularly in single-cell genomics. Work with AnnData objects for data creation, manipulation, file I/O, concatenation, and memory-efficient workflows. AnnData is a Python package for handling annotated data matrices, storing experimental measurements (X) alongside observation metadata (obs), variable metadata (var), and multi-dimensional annotations (obsm, varm, obsp, varp, uns). Originally designed for single-cell genomics through Scanpy, it now serves as a general-purpose framework for any annotated data requiring efficient storage, manipulation, and analysis.
## Core Capabilities ## When to Use This Skill
### 1. Creating and Structuring AnnData Objects Use this skill when:
- Creating, reading, or writing AnnData objects
- Working with h5ad, zarr, or other genomics data formats
- Performing single-cell RNA-seq analysis
- Managing large datasets with sparse matrices or backed mode
- Concatenating multiple datasets or experimental batches
- Subsetting, filtering, or transforming annotated data
- Integrating with scanpy, scvi-tools, or other scverse ecosystem tools
Create AnnData objects from various data sources and organize multi-dimensional annotations. ## Installation
**Basic creation:** ```bash
pip install anndata
# With optional dependencies
pip install anndata[dev,test,doc]
```
## Quick Start
### Creating an AnnData object
```python ```python
import anndata as ad import anndata as ad
import numpy as np import numpy as np
from scipy.sparse import csr_matrix
# From dense or sparse arrays
counts = np.random.poisson(1, size=(100, 2000))
adata = ad.AnnData(counts)
# With sparse matrix (memory-efficient)
counts = csr_matrix(np.random.poisson(1, size=(100, 2000)), dtype=np.float32)
adata = ad.AnnData(counts)
```
**With metadata:**
```python
import pandas as pd import pandas as pd
obs_meta = pd.DataFrame({ # Minimal creation
'cell_type': pd.Categorical(['B', 'T', 'Monocyte'] * 33 + ['B']), X = np.random.rand(100, 2000) # 100 cells × 2000 genes
'batch': ['batch1'] * 50 + ['batch2'] * 50 adata = ad.AnnData(X)
})
var_meta = pd.DataFrame({
'gene_name': [f'Gene_{i}' for i in range(2000)],
'highly_variable': np.random.choice([True, False], 2000)
})
adata = ad.AnnData(counts, obs=obs_meta, var=var_meta) # With metadata
obs = pd.DataFrame({
'cell_type': ['T cell', 'B cell'] * 50,
'sample': ['A', 'B'] * 50
}, index=[f'cell_{i}' for i in range(100)])
var = pd.DataFrame({
'gene_name': [f'Gene_{i}' for i in range(2000)]
}, index=[f'ENSG{i:05d}' for i in range(2000)])
adata = ad.AnnData(X=X, obs=obs, var=var)
``` ```
**Understanding the structure:** ### Reading data
- **X**: Primary data matrix (observations × variables)
- **obs**: Row (observation) annotations as DataFrame
- **var**: Column (variable) annotations as DataFrame
- **obsm**: Multi-dimensional observation annotations (e.g., PCA, UMAP coordinates)
- **varm**: Multi-dimensional variable annotations (e.g., gene loadings)
- **layers**: Alternative data matrices with same dimensions as X
- **uns**: Unstructured metadata dictionary
- **obsp/varp**: Pairwise relationship matrices (graphs)
### 2. Adding Annotations and Layers
Organize different data representations and metadata within a single object.
**Cell-level metadata (obs):**
```python ```python
adata.obs['n_genes'] = (adata.X > 0).sum(axis=1) # Read h5ad file
adata.obs['total_counts'] = adata.X.sum(axis=1) adata = ad.read_h5ad('data.h5ad')
adata.obs['condition'] = pd.Categorical(['control', 'treated'] * 50)
```
**Gene-level metadata (var):** # Read with backed mode (for large files)
```python adata = ad.read_h5ad('large_data.h5ad', backed='r')
adata.var['highly_variable'] = gene_variance > threshold
adata.var['chromosome'] = pd.Categorical(['chr1', 'chr2', ...])
```
**Embeddings (obsm/varm):** # Read other formats
```python
# Dimensionality reduction results
adata.obsm['X_pca'] = pca_coordinates # Shape: (n_obs, n_components)
adata.obsm['X_umap'] = umap_coordinates # Shape: (n_obs, 2)
adata.obsm['X_tsne'] = tsne_coordinates
# Gene loadings
adata.varm['PCs'] = principal_components # Shape: (n_vars, n_components)
```
**Alternative data representations (layers):**
```python
# Store multiple versions
adata.layers['counts'] = raw_counts
adata.layers['log1p'] = np.log1p(adata.X)
adata.layers['scaled'] = (adata.X - mean) / std
```
**Unstructured metadata (uns):**
```python
# Analysis parameters
adata.uns['preprocessing'] = {
'normalization': 'TPM',
'min_genes': 200,
'date': '2024-01-15'
}
# Results
adata.uns['pca'] = {'variance_ratio': variance_explained}
```
### 3. Subsetting and Views
Efficiently subset data while managing memory through views and copies.
**Subsetting operations:**
```python
# By observation/variable names
subset = adata[['Cell_1', 'Cell_10'], ['Gene_5', 'Gene_1900']]
# By boolean masks
b_cells = adata[adata.obs.cell_type == 'B']
high_quality = adata[adata.obs.n_genes > 200]
# By position
first_cells = adata[:100, :]
top_genes = adata[:, :500]
# Combined conditions
filtered = adata[
(adata.obs.batch == 'batch1') & (adata.obs.n_genes > 200),
adata.var.highly_variable
]
```
**Understanding views:**
- Subsetting returns **views** by default (memory-efficient, shares data with original)
- Modifying a view affects the original object
- Check with `adata.is_view`
- Convert to independent copy with `.copy()`
```python
# View (memory-efficient)
subset = adata[adata.obs.condition == 'treated']
print(subset.is_view) # True
# Independent copy
subset_copy = adata[adata.obs.condition == 'treated'].copy()
print(subset_copy.is_view) # False
```
### 4. File I/O and Backed Mode
Read and write data efficiently, with options for memory-limited environments.
**Writing data:**
```python
# Standard format with compression
adata.write('results.h5ad', compression='gzip')
# Alternative formats
adata.write_zarr('results.zarr') # For cloud storage
adata.write_loom('results.loom') # For compatibility
adata.write_csvs('results/') # As CSV files
```
**Reading data:**
```python
# Load into memory
adata = ad.read_h5ad('results.h5ad')
# Backed mode (disk-backed, memory-efficient)
adata = ad.read_h5ad('large_file.h5ad', backed='r')
print(adata.isbacked) # True
print(adata.filename) # Path to file
# Close file connection when done
adata.file.close()
```
**Reading from other formats:**
```python
# 10X format
adata = ad.read_mtx('matrix.mtx')
# CSV
adata = ad.read_csv('data.csv') adata = ad.read_csv('data.csv')
# Loom
adata = ad.read_loom('data.loom') adata = ad.read_loom('data.loom')
adata = ad.read_10x_h5('filtered_feature_bc_matrix.h5')
``` ```
**Working with backed mode:** ### Writing data
```python ```python
# Read in backed mode for large files # Write h5ad file
adata = ad.read_h5ad('large_dataset.h5ad', backed='r') adata.write_h5ad('output.h5ad')
# Process in chunks # Write with compression
for chunk in adata.chunk_X(chunk_size=1000): adata.write_h5ad('output.h5ad', compression='gzip')
result = process_chunk(chunk)
# Load to memory if needed # Write other formats
adata_memory = adata.to_memory() adata.write_zarr('output.zarr')
adata.write_csvs('output_dir/')
``` ```
### 5. Concatenating Multiple Datasets ### Basic operations
Combine multiple AnnData objects with control over how data is merged.
**Basic concatenation:**
```python ```python
# Concatenate observations (most common) # Subset by conditions
combined = ad.concat([adata1, adata2, adata3], axis=0) t_cells = adata[adata.obs['cell_type'] == 'T cell']
# Concatenate variables (rare) # Subset by indices
combined = ad.concat([adata1, adata2], axis=1) subset = adata[0:50, 0:100]
# Add metadata
adata.obs['quality_score'] = np.random.rand(adata.n_obs)
adata.var['highly_variable'] = np.random.rand(adata.n_vars) > 0.8
# Access dimensions
print(f"{adata.n_obs} observations × {adata.n_vars} variables")
``` ```
**Join strategies:** ## Core Capabilities
```python
# Inner join: only shared variables (no missing data)
combined = ad.concat([adata1, adata2], join='inner')
# Outer join: all variables (fills missing with 0) ### 1. Data Structure
combined = ad.concat([adata1, adata2], join='outer')
Understand the AnnData object structure including X, obs, var, layers, obsm, varm, obsp, varp, uns, and raw components.
**See**: `references/data_structure.md` for comprehensive information on:
- Core components (X, obs, var, layers, obsm, varm, obsp, varp, uns, raw)
- Creating AnnData objects from various sources
- Accessing and manipulating data components
- Memory-efficient practices
### 2. Input/Output Operations
Read and write data in various formats with support for compression, backed mode, and cloud storage.
**See**: `references/io_operations.md` for details on:
- Native formats (h5ad, zarr)
- Alternative formats (CSV, MTX, Loom, 10X, Excel)
- Backed mode for large datasets
- Remote data access
- Format conversion
- Performance optimization
Common commands:
```python
# Read/write h5ad
adata = ad.read_h5ad('data.h5ad', backed='r')
adata.write_h5ad('output.h5ad', compression='gzip')
# Read 10X data
adata = ad.read_10x_h5('filtered_feature_bc_matrix.h5')
# Read MTX format
adata = ad.read_mtx('matrix.mtx').T
``` ```
**Tracking data sources:** ### 3. Concatenation
Combine multiple AnnData objects along observations or variables with flexible join strategies.
**See**: `references/concatenation.md` for comprehensive coverage of:
- Basic concatenation (axis=0 for observations, axis=1 for variables)
- Join types (inner, outer)
- Merge strategies (same, unique, first, only)
- Tracking data sources with labels
- Lazy concatenation (AnnCollection)
- On-disk concatenation for large datasets
Common commands:
```python ```python
# Add source labels # Concatenate observations (combine samples)
combined = ad.concat( adata = ad.concat(
[adata1, adata2, adata3], [adata1, adata2, adata3],
label='dataset',
keys=['exp1', 'exp2', 'exp3']
)
# Creates combined.obs['dataset'] with values 'exp1', 'exp2', 'exp3'
# Make duplicate indices unique
combined = ad.concat(
[adata1, adata2],
keys=['batch1', 'batch2'],
index_unique='-'
)
# Cell names become: Cell_0-batch1, Cell_0-batch2, etc.
```
**Merge strategies for metadata:**
```python
# merge=None: exclude variable annotations (default)
combined = ad.concat([adata1, adata2], merge=None)
# merge='same': keep only identical annotations
combined = ad.concat([adata1, adata2], merge='same')
# merge='first': use first occurrence
combined = ad.concat([adata1, adata2], merge='first')
# merge='unique': keep annotations with single value
combined = ad.concat([adata1, adata2], merge='unique')
```
**Complete example:**
```python
# Load batches
batch1 = ad.read_h5ad('batch1.h5ad')
batch2 = ad.read_h5ad('batch2.h5ad')
batch3 = ad.read_h5ad('batch3.h5ad')
# Concatenate with full tracking
combined = ad.concat(
[batch1, batch2, batch3],
axis=0, axis=0,
join='outer', # Keep all genes join='inner',
merge='first', # Use first batch's annotations label='batch',
label='batch_id', # Track source keys=['batch1', 'batch2', 'batch3']
keys=['b1', 'b2', 'b3'], # Custom labels )
index_unique='-' # Make cell names unique
# Concatenate variables (combine modalities)
adata = ad.concat([adata_rna, adata_protein], axis=1)
# Lazy concatenation
from anndata.experimental import AnnCollection
collection = AnnCollection(
['data1.h5ad', 'data2.h5ad'],
join_obs='outer',
label='dataset'
) )
``` ```
### 6. Data Conversion and Extraction ### 4. Data Manipulation
Convert between AnnData and other formats for interoperability. Transform, subset, filter, and reorganize data efficiently.
**To DataFrame:** **See**: `references/manipulation.md` for detailed guidance on:
- Subsetting (by indices, names, boolean masks, metadata conditions)
- Transposition
- Copying (full copies vs views)
- Renaming (observations, variables, categories)
- Type conversions (strings to categoricals, sparse/dense)
- Adding/removing data components
- Reordering
- Quality control filtering
Common commands:
```python ```python
# Convert X to DataFrame # Subset by metadata
df = adata.to_df() filtered = adata[adata.obs['quality_score'] > 0.8]
hv_genes = adata[:, adata.var['highly_variable']]
# Convert specific layer # Transpose
df = adata.to_df(layer='log1p') adata_T = adata.T
# Copy vs view
view = adata[0:100, :] # View (lightweight reference)
copy = adata[0:100, :].copy() # Independent copy
# Convert strings to categoricals
adata.strings_to_categoricals()
``` ```
**Extract vectors:** ### 5. Best Practices
```python
# Get 1D arrays from data or annotations Follow recommended patterns for memory efficiency, performance, and reproducibility.
gene_expression = adata.obs_vector('Gene_100')
cell_metadata = adata.obs_vector('n_genes') **See**: `references/best_practices.md` for guidelines on:
``` - Memory management (sparse matrices, categoricals, backed mode)
- Views vs copies
**Transpose:** - Data storage optimization
```python - Performance optimization
# Swap observations and variables - Working with raw data
transposed = adata.T - Metadata management
``` - Reproducibility
- Error handling
### 7. Memory Optimization - Integration with other tools
- Common pitfalls and solutions
Strategies for working with large datasets efficiently.
Key recommendations:
**Use sparse matrices:**
```python ```python
# Use sparse matrices for sparse data
from scipy.sparse import csr_matrix from scipy.sparse import csr_matrix
adata.X = csr_matrix(adata.X)
# Check sparsity # Convert strings to categoricals
density = (adata.X != 0).sum() / adata.X.size
if density < 0.3: # Less than 30% non-zero
adata.X = csr_matrix(adata.X)
```
**Convert strings to categoricals:**
```python
# Automatic conversion
adata.strings_to_categoricals() adata.strings_to_categoricals()
# Manual conversion (more control) # Use backed mode for large files
adata.obs['cell_type'] = pd.Categorical(adata.obs['cell_type']) adata = ad.read_h5ad('large.h5ad', backed='r')
# Store raw before filtering
adata.raw = adata.copy()
adata = adata[:, adata.var['highly_variable']]
``` ```
**Use backed mode:** ## Integration with Scverse Ecosystem
```python
# Read without loading into memory
adata = ad.read_h5ad('large_file.h5ad', backed='r')
# Work with subsets AnnData serves as the foundational data structure for the scverse ecosystem:
subset = adata[:1000, :500].copy() # Only this subset in memory
### Scanpy (Single-cell analysis)
```python
import scanpy as sc
# Preprocessing
sc.pp.filter_cells(adata, min_genes=200)
sc.pp.normalize_total(adata, target_sum=1e4)
sc.pp.log1p(adata)
sc.pp.highly_variable_genes(adata, n_top_genes=2000)
# Dimensionality reduction
sc.pp.pca(adata, n_comps=50)
sc.pp.neighbors(adata, n_neighbors=15)
sc.tl.umap(adata)
sc.tl.leiden(adata)
# Visualization
sc.pl.umap(adata, color=['cell_type', 'leiden'])
``` ```
**Chunked processing:** ### Muon (Multimodal data)
```python ```python
# Process data in chunks import muon as mu
results = []
for chunk in adata.chunk_X(chunk_size=1000): # Combine RNA and protein data
result = expensive_computation(chunk) mdata = mu.MuData({'rna': adata_rna, 'protein': adata_protein})
results.append(result) ```
### PyTorch integration
```python
from anndata.experimental import AnnLoader
# Create DataLoader for deep learning
dataloader = AnnLoader(adata, batch_size=128, shuffle=True)
for batch in dataloader:
X = batch.X
# Train model
``` ```
## Common Workflows ## Common Workflows
### Single-Cell RNA-seq Analysis ### Single-cell RNA-seq analysis
Complete workflow from loading to analysis:
```python ```python
import anndata as ad import anndata as ad
import numpy as np import scanpy as sc
import pandas as pd
# 1. Load data # 1. Load data
adata = ad.read_mtx('matrix.mtx') adata = ad.read_10x_h5('filtered_feature_bc_matrix.h5')
adata.obs_names = pd.read_csv('barcodes.tsv', header=None)[0]
adata.var_names = pd.read_csv('genes.tsv', header=None)[0]
# 2. Quality control # 2. Quality control
adata.obs['n_genes'] = (adata.X > 0).sum(axis=1) adata.obs['n_genes'] = (adata.X > 0).sum(axis=1)
adata.obs['total_counts'] = adata.X.sum(axis=1) adata.obs['n_counts'] = adata.X.sum(axis=1)
adata = adata[adata.obs.n_genes > 200] adata = adata[adata.obs['n_genes'] > 200]
adata = adata[adata.obs.total_counts < 10000] adata = adata[adata.obs['n_counts'] < 50000]
# 3. Filter genes # 3. Store raw
min_cells = 3 adata.raw = adata.copy()
adata = adata[:, (adata.X > 0).sum(axis=0) >= min_cells]
# 4. Store raw counts # 4. Normalize and filter
adata.layers['counts'] = adata.X.copy() sc.pp.normalize_total(adata, target_sum=1e4)
sc.pp.log1p(adata)
sc.pp.highly_variable_genes(adata, n_top_genes=2000)
adata = adata[:, adata.var['highly_variable']]
# 5. Normalize # 5. Save processed data
adata.X = adata.X / adata.obs.total_counts.values[:, None] * 1e4 adata.write_h5ad('processed.h5ad')
adata.X = np.log1p(adata.X)
# 6. Feature selection
gene_var = adata.X.var(axis=0)
adata.var['highly_variable'] = gene_var > np.percentile(gene_var, 90)
# 7. Dimensionality reduction (example with external tools)
# adata.obsm['X_pca'] = compute_pca(adata.X)
# adata.obsm['X_umap'] = compute_umap(adata.obsm['X_pca'])
# 8. Save results
adata.write('analyzed.h5ad', compression='gzip')
``` ```
### Batch Integration ### Batch integration
Combining multiple experimental batches:
```python ```python
# Load batches # Load multiple batches
batches = [ad.read_h5ad(f'batch_{i}.h5ad') for i in range(3)] adata1 = ad.read_h5ad('batch1.h5ad')
adata2 = ad.read_h5ad('batch2.h5ad')
adata3 = ad.read_h5ad('batch3.h5ad')
# Concatenate with tracking # Concatenate with batch labels
combined = ad.concat( adata = ad.concat(
batches, [adata1, adata2, adata3],
axis=0,
join='outer',
label='batch', label='batch',
keys=['batch_0', 'batch_1', 'batch_2'], keys=['batch1', 'batch2', 'batch3'],
index_unique='-' join='inner'
) )
# Add batch as numeric for correction algorithms # Apply batch correction
combined.obs['batch_numeric'] = combined.obs['batch'].cat.codes import scanpy as sc
sc.pp.combat(adata, key='batch')
# Perform batch correction (with external tools) # Continue analysis
# corrected_pca = run_harmony(combined.obsm['X_pca'], combined.obs['batch']) sc.pp.pca(adata)
# combined.obsm['X_pca_corrected'] = corrected_pca sc.pp.neighbors(adata)
sc.tl.umap(adata)
# Save integrated data
combined.write('integrated.h5ad', compression='gzip')
``` ```
### Memory-Efficient Large Dataset Processing ### Working with large datasets
Working with datasets too large for memory:
```python ```python
# Read in backed mode # Open in backed mode
adata = ad.read_h5ad('huge_dataset.h5ad', backed='r') adata = ad.read_h5ad('100GB_dataset.h5ad', backed='r')
# Compute statistics in chunks # Filter based on metadata (no data loading)
total = 0 high_quality = adata[adata.obs['quality_score'] > 0.8]
for chunk in adata.chunk_X(chunk_size=1000):
total += chunk.sum()
mean_expression = total / (adata.n_obs * adata.n_vars) # Load filtered subset
adata_subset = high_quality.to_memory()
# Work with subset # Process subset
high_quality_cells = adata.obs.n_genes > 1000 process(adata_subset)
subset = adata[high_quality_cells, :].copy()
# Close file # Or process in chunks
adata.file.close() chunk_size = 1000
for i in range(0, adata.n_obs, chunk_size):
chunk = adata[i:i+chunk_size, :].to_memory()
process(chunk)
``` ```
## Best Practices ## Troubleshooting
### Data Organization ### Out of memory errors
Use backed mode or convert to sparse matrices:
1. **Use layers for different representations**: Store raw counts, normalized, log-transformed, and scaled data in separate layers
2. **Use obsm/varm for multi-dimensional data**: Embeddings, loadings, and other matrix-like annotations
3. **Use uns for metadata**: Analysis parameters, dates, version information
4. **Use categoricals for efficiency**: Convert repeated strings to categorical types
### Subsetting
1. **Understand views vs copies**: Subsetting returns views by default; use `.copy()` when you need independence
2. **Chain conditions efficiently**: Combine boolean masks in a single subsetting operation
3. **Validate after subsetting**: Check dimensions and data integrity
### File I/O
1. **Use compression**: Always use `compression='gzip'` when writing h5ad files
2. **Choose the right format**: H5AD for general use, Zarr for cloud storage, Loom for compatibility
3. **Close backed files**: Always close file connections when done
4. **Use backed mode for large files**: Don't load everything into memory if not needed
### Concatenation
1. **Choose appropriate join**: Inner join for complete cases, outer join to preserve all features
2. **Track sources**: Use `label` and `keys` to track data origin
3. **Handle duplicates**: Use `index_unique` to make observation names unique
4. **Select merge strategy**: Choose appropriate merge strategy for variable annotations
### Memory Management
1. **Use sparse matrices**: For data with <30% non-zero values
2. **Convert to categoricals**: For repeated string values
3. **Process in chunks**: For operations on very large matrices
4. **Use backed mode**: Read large files with `backed='r'`
### Naming Conventions
Follow these conventions for consistency:
- **Embeddings**: `X_pca`, `X_umap`, `X_tsne`
- **Layers**: Descriptive names like `counts`, `log1p`, `scaled`
- **Observations**: Use snake_case like `cell_type`, `n_genes`, `total_counts`
- **Variables**: Use snake_case like `highly_variable`, `gene_name`
## Reference Documentation
For detailed API information, usage patterns, and troubleshooting, refer to the comprehensive reference files in the `references/` directory:
1. **api_reference.md**: Complete API documentation including all classes, methods, and functions with usage examples. Use `grep -r "pattern" references/api_reference.md` to search for specific functions or parameters.
2. **workflows_best_practices.md**: Detailed workflows for common tasks (single-cell analysis, batch integration, large datasets), best practices for memory management, data organization, and common pitfalls to avoid. Use `grep -r "pattern" references/workflows_best_practices.md` to search for specific workflows.
3. **concatenation_guide.md**: Comprehensive guide to concatenation strategies, join types, merge strategies, source tracking, and troubleshooting concatenation issues. Use `grep -r "pattern" references/concatenation_guide.md` to search for concatenation patterns.
## When to Load References
Load reference files into context when:
- Implementing complex concatenation with specific merge strategies
- Troubleshooting errors or unexpected behavior
- Optimizing memory usage for large datasets
- Implementing complete analysis workflows
- Understanding nuances of specific API methods
To search within references without loading them:
```python ```python
# Example: Search for information about backed mode # Backed mode
grep -r "backed mode" references/ adata = ad.read_h5ad('file.h5ad', backed='r')
# Sparse matrices
from scipy.sparse import csr_matrix
adata.X = csr_matrix(adata.X)
``` ```
## Common Error Patterns ### Slow file reading
Use compression and appropriate formats:
```python
# Optimize for storage
adata.strings_to_categoricals()
adata.write_h5ad('file.h5ad', compression='gzip')
### Memory Errors # Use Zarr for cloud storage
**Problem**: "MemoryError: Unable to allocate array" adata.write_zarr('file.zarr', chunks=(1000, 1000))
**Solution**: Use backed mode, sparse matrices, or process in chunks ```
### Dimension Mismatch ### Index alignment issues
**Problem**: "ValueError: operands could not be broadcast together" Always align external data on index:
**Solution**: Use outer join in concatenation or align indices before operations ```python
# Wrong
adata.obs['new_col'] = external_data['values']
### View Modification # Correct
**Problem**: "ValueError: assignment destination is read-only" adata.obs['new_col'] = external_data.set_index('cell_id').loc[adata.obs_names, 'values']
**Solution**: Convert view to copy with `.copy()` before modification ```
### File Already Open ## Additional Resources
**Problem**: "OSError: Unable to open file (file is already open)"
**Solution**: Close previous file connection with `adata.file.close()` - **Official documentation**: https://anndata.readthedocs.io/
- **Scanpy tutorials**: https://scanpy.readthedocs.io/
- **Scverse ecosystem**: https://scverse.org/
- **GitHub repository**: https://github.com/scverse/anndata

View File

@@ -1,218 +0,0 @@
# AnnData API Reference
## Core AnnData Class
The `AnnData` class is the central data structure for storing and manipulating annotated datasets in single-cell genomics and other domains.
### Core Attributes
| Attribute | Type | Description |
|-----------|------|-------------|
| **X** | array-like | Primary data matrix (#observations × #variables). Supports NumPy arrays, sparse matrices (CSR/CSC), HDF5 datasets, Zarr arrays, and Dask arrays |
| **obs** | DataFrame | One-dimensional annotation of observations (rows). Length equals observation count |
| **var** | DataFrame | One-dimensional annotation of variables/features (columns). Length equals variable count |
| **uns** | OrderedDict | Unstructured annotation for miscellaneous metadata |
| **obsm** | dict-like | Multi-dimensional observation annotations (structured arrays aligned to observation axis) |
| **varm** | dict-like | Multi-dimensional variable annotations (structured arrays aligned to variable axis) |
| **obsp** | dict-like | Pairwise observation annotations (square matrices representing graphs) |
| **varp** | dict-like | Pairwise variable annotations (graphs between features) |
| **layers** | dict-like | Additional data matrices matching X's dimensions |
| **raw** | AnnData | Stores original versions of X and var before transformations |
### Dimensional Properties
- **n_obs**: Number of observations (sample count)
- **n_vars**: Number of variables/features
- **shape**: Tuple returning (n_obs, n_vars)
- **T**: Transposed view of the entire object
### State Properties
- **isbacked**: Boolean indicating disk-backed storage status
- **is_view**: Boolean identifying whether object is a view of another AnnData
- **filename**: Path to backing .h5ad file; setting this enables disk-backed mode
### Key Methods
#### Construction and Copying
- **`AnnData(X=None, obs=None, var=None, ...)`**: Create new AnnData object
- **`copy(filename=None)`**: Create full copy, optionally stored on disk
#### Subsetting and Views
- **`adata[obs_subset, var_subset]`**: Subset observations and variables (returns view by default)
- **`.copy()`**: Convert view to independent object
#### Data Access
- **`to_df(layer=None)`**: Generate pandas DataFrame representation
- **`obs_vector(k, layer=None)`**: Extract 1D array from X, layers, or annotations
- **`var_vector(k, layer=None)`**: Extract 1D array for a variable
- **`chunk_X(chunk_size)`**: Iterate over data matrix in chunks
- **`chunked_X(chunk_size)`**: Context manager for chunked iteration
#### Transformation
- **`transpose()`**: Return transposed object
- **`concatenate(*adatas, ...)`**: Combine multiple AnnData objects along observation axis
- **`to_memory(copy=False)`**: Load all backed arrays into RAM
#### File I/O
- **`write_h5ad(filename, compression='gzip')`**: Save as .h5ad HDF5 format
- **`write_zarr(store, ...)`**: Export hierarchical Zarr store
- **`write_loom(filename, ...)`**: Output .loom format file
- **`write_csvs(dirname, ...)`**: Write annotations as separate CSV files
#### Data Management
- **`strings_to_categoricals()`**: Convert string annotations to categorical types
- **`rename_categories(key, categories)`**: Update category labels in annotations
- **`obs_names_make_unique(sep='-')`**: Append numeric suffixes to duplicate observation names
- **`var_names_make_unique(sep='-')`**: Append numeric suffixes to duplicate variable names
## Module-Level Functions
### Reading Functions
#### Native Formats
- **`read_h5ad(filename, backed=None, as_sparse=None)`**: Load HDF5-based .h5ad files
- **`read_zarr(store)`**: Access hierarchical Zarr array stores
#### Alternative Formats
- **`read_csv(filename, ...)`**: Import from CSV files
- **`read_excel(filename, ...)`**: Import from Excel files
- **`read_hdf(filename, key)`**: Read from HDF5 files
- **`read_loom(filename, ...)`**: Import from .loom files
- **`read_mtx(filename, ...)`**: Import from Matrix Market format
- **`read_text(filename, ...)`**: Import from text files
- **`read_umi_tools(filename, ...)`**: Import from UMI-tools format
#### Element-Level Access
- **`read_elem(elem)`**: Retrieve specific components from storage
- **`sparse_dataset(group)`**: Generate backed sparse matrix classes
### Combining Operations
- **`concat(adatas, axis=0, join='inner', merge=None, ...)`**: Merge multiple AnnData objects
- **axis**: 0 (observations) or 1 (variables)
- **join**: 'inner' (intersection) or 'outer' (union)
- **merge**: Strategy for non-concatenation axis ('same', 'unique', 'first', 'only', or None)
- **label**: Column name for source tracking
- **keys**: Dataset identifiers for source annotation
- **index_unique**: Separator for making duplicate indices unique
### Writing Functions
- **`write_h5ad(filename, adata, compression='gzip')`**: Export to HDF5 format
- **`write_zarr(store, adata, ...)`**: Save as Zarr hierarchical arrays
- **`write_elem(elem, ...)`**: Write individual components
### Experimental Features
- **`AnnCollection`**: Batch processing for large collections
- **`AnnLoader`**: PyTorch DataLoader integration
- **`concat_on_disk(*adatas, filename, ...)`**: Memory-efficient out-of-core concatenation
- **`read_lazy(filename)`**: Lazy loading with deferred computation
- **`read_dispatched(filename, ...)`**: Custom I/O with callbacks
- **`write_dispatched(filename, ...)`**: Custom writing with callbacks
### Configuration
- **`settings`**: Package-wide configuration object
- **`settings.override(**kwargs)`**: Context manager for temporary settings changes
## Common Usage Patterns
### Creating AnnData Objects
```python
import anndata as ad
import numpy as np
from scipy.sparse import csr_matrix
# From dense array
counts = np.random.poisson(1, size=(100, 2000))
adata = ad.AnnData(counts)
# From sparse matrix
counts = csr_matrix(np.random.poisson(1, size=(100, 2000)), dtype=np.float32)
adata = ad.AnnData(counts)
# With metadata
import pandas as pd
obs_meta = pd.DataFrame({'cell_type': ['B', 'T', 'Monocyte'] * 33 + ['B']})
var_meta = pd.DataFrame({'gene_name': [f'Gene_{i}' for i in range(2000)]})
adata = ad.AnnData(counts, obs=obs_meta, var=var_meta)
```
### Subsetting
```python
# By names
subset = adata[['Cell_1', 'Cell_10'], ['Gene_5', 'Gene_1900']]
# By boolean mask
b_cells = adata[adata.obs.cell_type == 'B']
# By position
first_five = adata[:5, :100]
# Convert view to copy
adata_copy = adata[:5].copy()
```
### Adding Annotations
```python
# Cell-level metadata
adata.obs['batch'] = pd.Categorical(['batch1', 'batch2'] * 50)
# Gene-level metadata
adata.var['highly_variable'] = np.random.choice([True, False], size=adata.n_vars)
# Embeddings
adata.obsm['X_pca'] = np.random.normal(size=(adata.n_obs, 50))
adata.obsm['X_umap'] = np.random.normal(size=(adata.n_obs, 2))
# Alternative data representations
adata.layers['log_transformed'] = np.log1p(adata.X)
adata.layers['scaled'] = (adata.X - adata.X.mean(axis=0)) / adata.X.std(axis=0)
# Unstructured metadata
adata.uns['experiment_date'] = '2024-01-15'
adata.uns['parameters'] = {'min_genes': 200, 'min_cells': 3}
```
### File I/O
```python
# Write to disk
adata.write('my_results.h5ad', compression='gzip')
# Read into memory
adata = ad.read_h5ad('my_results.h5ad')
# Read in backed mode (memory-efficient)
adata = ad.read_h5ad('my_results.h5ad', backed='r')
# Close file connection
adata.file.close()
```
### Concatenation
```python
# Combine multiple datasets
adata1 = ad.AnnData(np.random.poisson(1, size=(100, 2000)))
adata2 = ad.AnnData(np.random.poisson(1, size=(150, 2000)))
adata3 = ad.AnnData(np.random.poisson(1, size=(80, 2000)))
# Simple concatenation
combined = ad.concat([adata1, adata2, adata3], axis=0)
# With source labels
combined = ad.concat(
[adata1, adata2, adata3],
axis=0,
label='dataset',
keys=['exp1', 'exp2', 'exp3']
)
# Inner join (only shared variables)
combined = ad.concat([adata1, adata2, adata3], axis=0, join='inner')
# Outer join (all variables, pad with zeros)
combined = ad.concat([adata1, adata2, adata3], axis=0, join='outer')
```

View File

@@ -0,0 +1,525 @@
# Best Practices
Guidelines for efficient and effective use of AnnData.
## Memory Management
### Use sparse matrices for sparse data
```python
import numpy as np
from scipy.sparse import csr_matrix
import anndata as ad
# Check data sparsity
data = np.random.rand(1000, 2000)
sparsity = 1 - np.count_nonzero(data) / data.size
print(f"Sparsity: {sparsity:.2%}")
# Convert to sparse if >50% zeros
if sparsity > 0.5:
adata = ad.AnnData(X=csr_matrix(data))
else:
adata = ad.AnnData(X=data)
# Benefits: 10-100x memory reduction for sparse genomics data
```
### Convert strings to categoricals
```python
# Inefficient: string columns use lots of memory
adata.obs['cell_type'] = ['Type_A', 'Type_B', 'Type_C'] * 333 + ['Type_A']
# Efficient: convert to categorical
adata.obs['cell_type'] = adata.obs['cell_type'].astype('category')
# Convert all string columns
adata.strings_to_categoricals()
# Benefits: 10-50x memory reduction for repeated strings
```
### Use backed mode for large datasets
```python
# Don't load entire dataset into memory
adata = ad.read_h5ad('large_dataset.h5ad', backed='r')
# Work with metadata
filtered = adata[adata.obs['quality'] > 0.8]
# Load only filtered subset
adata_subset = filtered.to_memory()
# Benefits: Work with datasets larger than RAM
```
## Views vs Copies
### Understanding views
```python
# Subsetting creates a view by default
subset = adata[0:100, :]
print(subset.is_view) # True
# Views don't copy data (memory efficient)
# But modifications can affect original
# Check if object is a view
if adata.is_view:
adata = adata.copy() # Make independent
```
### When to use views
```python
# Good: Read-only operations on subsets
mean_expr = adata[adata.obs['cell_type'] == 'T cell'].X.mean()
# Good: Temporary analysis
temp_subset = adata[:100, :]
result = analyze(temp_subset.X)
```
### When to use copies
```python
# Create independent copy for modifications
adata_filtered = adata[keep_cells, :].copy()
# Safe to modify without affecting original
adata_filtered.obs['new_column'] = values
# Always copy when:
# - Storing subset for later use
# - Modifying subset data
# - Passing to function that modifies data
```
## Data Storage Best Practices
### Choose the right format
**H5AD (HDF5) - Default choice**
```python
adata.write_h5ad('data.h5ad', compression='gzip')
```
- Fast random access
- Supports backed mode
- Good compression
- Best for: Most use cases
**Zarr - Cloud and parallel access**
```python
adata.write_zarr('data.zarr', chunks=(100, 100))
```
- Excellent for cloud storage (S3, GCS)
- Supports parallel I/O
- Good compression
- Best for: Large datasets, cloud workflows, parallel processing
**CSV - Interoperability**
```python
adata.write_csvs('output_dir/')
```
- Human readable
- Compatible with all tools
- Large file sizes, slow
- Best for: Sharing with non-Python tools, small datasets
### Optimize file size
```python
# Before saving, optimize:
# 1. Convert to sparse if appropriate
from scipy.sparse import csr_matrix, issparse
if not issparse(adata.X):
density = np.count_nonzero(adata.X) / adata.X.size
if density < 0.5:
adata.X = csr_matrix(adata.X)
# 2. Convert strings to categoricals
adata.strings_to_categoricals()
# 3. Use compression
adata.write_h5ad('data.h5ad', compression='gzip', compression_opts=9)
# Typical results: 5-20x file size reduction
```
## Backed Mode Strategies
### Read-only analysis
```python
# Open in read-only backed mode
adata = ad.read_h5ad('data.h5ad', backed='r')
# Perform filtering without loading data
high_quality = adata[adata.obs['quality_score'] > 0.8]
# Load only filtered data
adata_filtered = high_quality.to_memory()
```
### Read-write modifications
```python
# Open in read-write backed mode
adata = ad.read_h5ad('data.h5ad', backed='r+')
# Modify metadata (written to disk)
adata.obs['new_annotation'] = values
# X remains on disk, modifications saved immediately
```
### Chunked processing
```python
# Process large dataset in chunks
adata = ad.read_h5ad('huge_dataset.h5ad', backed='r')
results = []
chunk_size = 1000
for i in range(0, adata.n_obs, chunk_size):
chunk = adata[i:i+chunk_size, :].to_memory()
result = process(chunk)
results.append(result)
final_result = combine(results)
```
## Performance Optimization
### Subsetting performance
```python
# Fast: Boolean indexing with arrays
mask = np.array(adata.obs['quality'] > 0.5)
subset = adata[mask, :]
# Slow: Boolean indexing with Series (creates view chain)
subset = adata[adata.obs['quality'] > 0.5, :]
# Fastest: Integer indices
indices = np.where(adata.obs['quality'] > 0.5)[0]
subset = adata[indices, :]
```
### Avoid repeated subsetting
```python
# Inefficient: Multiple subset operations
for cell_type in ['A', 'B', 'C']:
subset = adata[adata.obs['cell_type'] == cell_type]
process(subset)
# Efficient: Group and process
groups = adata.obs.groupby('cell_type').groups
for cell_type, indices in groups.items():
subset = adata[indices, :]
process(subset)
```
### Use chunked operations for large matrices
```python
# Process X in chunks
for chunk in adata.chunked_X(chunk_size=1000):
result = compute(chunk)
# More memory efficient than loading full X
```
## Working with Raw Data
### Store raw before filtering
```python
# Original data with all genes
adata = ad.AnnData(X=counts)
# Store raw before filtering
adata.raw = adata.copy()
# Filter to highly variable genes
adata = adata[:, adata.var['highly_variable']]
# Later: access original data
original_expression = adata.raw.X
all_genes = adata.raw.var_names
```
### When to use raw
```python
# Use raw for:
# - Differential expression on filtered genes
# - Visualization of specific genes not in filtered set
# - Accessing original counts after normalization
# Access raw data
if adata.raw is not None:
gene_expr = adata.raw[:, 'GENE_NAME'].X
else:
gene_expr = adata[:, 'GENE_NAME'].X
```
## Metadata Management
### Naming conventions
```python
# Consistent naming improves usability
# Observation metadata (obs):
# - cell_id, sample_id
# - cell_type, tissue, condition
# - n_genes, n_counts, percent_mito
# - cluster, leiden, louvain
# Variable metadata (var):
# - gene_id, gene_name
# - highly_variable, n_cells
# - mean_expression, dispersion
# Embeddings (obsm):
# - X_pca, X_umap, X_tsne
# - X_diffmap, X_draw_graph_fr
# Follow conventions from scanpy/scverse ecosystem
```
### Document metadata
```python
# Store metadata descriptions in uns
adata.uns['metadata_descriptions'] = {
'cell_type': 'Cell type annotation from automated clustering',
'quality_score': 'QC score from scrublet (0-1, higher is better)',
'batch': 'Experimental batch identifier'
}
# Store processing history
adata.uns['processing_steps'] = [
'Raw counts loaded from 10X',
'Filtered: n_genes > 200, n_counts < 50000',
'Normalized to 10000 counts per cell',
'Log transformed'
]
```
## Reproducibility
### Set random seeds
```python
import numpy as np
# Set seed for reproducible results
np.random.seed(42)
# Document in uns
adata.uns['random_seed'] = 42
```
### Store parameters
```python
# Store analysis parameters in uns
adata.uns['pca'] = {
'n_comps': 50,
'svd_solver': 'arpack',
'random_state': 42
}
adata.uns['neighbors'] = {
'n_neighbors': 15,
'n_pcs': 50,
'metric': 'euclidean',
'method': 'umap'
}
```
### Version tracking
```python
import anndata
import scanpy
import numpy
# Store versions
adata.uns['versions'] = {
'anndata': anndata.__version__,
'scanpy': scanpy.__version__,
'numpy': numpy.__version__,
'python': sys.version
}
```
## Error Handling
### Check data validity
```python
# Verify dimensions
assert adata.n_obs == len(adata.obs)
assert adata.n_vars == len(adata.var)
assert adata.X.shape == (adata.n_obs, adata.n_vars)
# Check for NaN values
has_nan = np.isnan(adata.X.data).any() if issparse(adata.X) else np.isnan(adata.X).any()
if has_nan:
print("Warning: Data contains NaN values")
# Check for negative values (if counts expected)
has_negative = (adata.X.data < 0).any() if issparse(adata.X) else (adata.X < 0).any()
if has_negative:
print("Warning: Data contains negative values")
```
### Validate metadata
```python
# Check for missing values
missing_obs = adata.obs.isnull().sum()
if missing_obs.any():
print("Missing values in obs:")
print(missing_obs[missing_obs > 0])
# Verify indices are unique
assert adata.obs_names.is_unique, "Observation names not unique"
assert adata.var_names.is_unique, "Variable names not unique"
# Check metadata alignment
assert len(adata.obs) == adata.n_obs
assert len(adata.var) == adata.n_vars
```
## Integration with Other Tools
### Scanpy integration
```python
import scanpy as sc
# AnnData is native format for scanpy
sc.pp.filter_cells(adata, min_genes=200)
sc.pp.filter_genes(adata, min_cells=3)
sc.pp.normalize_total(adata, target_sum=1e4)
sc.pp.log1p(adata)
sc.pp.highly_variable_genes(adata)
sc.pp.pca(adata)
sc.pp.neighbors(adata)
sc.tl.umap(adata)
```
### Pandas integration
```python
import pandas as pd
# Convert to DataFrame
df = adata.to_df()
# Create from DataFrame
adata = ad.AnnData(df)
# Work with metadata as DataFrames
adata.obs = adata.obs.merge(external_metadata, left_index=True, right_index=True)
```
### PyTorch integration
```python
from anndata.experimental import AnnLoader
# Create PyTorch DataLoader
dataloader = AnnLoader(adata, batch_size=128, shuffle=True)
# Iterate in training loop
for batch in dataloader:
X = batch.X
# Train model on batch
```
## Common Pitfalls
### Pitfall 1: Modifying views
```python
# Wrong: Modifying view can affect original
subset = adata[:100, :]
subset.X = new_data # May modify adata.X!
# Correct: Copy before modifying
subset = adata[:100, :].copy()
subset.X = new_data # Independent copy
```
### Pitfall 2: Index misalignment
```python
# Wrong: Assuming order matches
external_data = pd.read_csv('data.csv')
adata.obs['new_col'] = external_data['values'] # May misalign!
# Correct: Align on index
adata.obs['new_col'] = external_data.set_index('cell_id').loc[adata.obs_names, 'values']
```
### Pitfall 3: Mixing sparse and dense
```python
# Wrong: Converting sparse to dense uses huge memory
result = adata.X + 1 # Converts sparse to dense!
# Correct: Use sparse operations
from scipy.sparse import issparse
if issparse(adata.X):
result = adata.X.copy()
result.data += 1
```
### Pitfall 4: Not handling views
```python
# Wrong: Assuming subset is independent
subset = adata[mask, :]
del adata # subset may become invalid!
# Correct: Copy when needed
subset = adata[mask, :].copy()
del adata # subset remains valid
```
### Pitfall 5: Ignoring memory constraints
```python
# Wrong: Loading huge dataset into memory
adata = ad.read_h5ad('100GB_file.h5ad') # OOM error!
# Correct: Use backed mode
adata = ad.read_h5ad('100GB_file.h5ad', backed='r')
subset = adata[adata.obs['keep']].to_memory()
```
## Workflow Example
Complete best-practices workflow:
```python
import anndata as ad
import numpy as np
from scipy.sparse import csr_matrix
# 1. Load with backed mode if large
adata = ad.read_h5ad('data.h5ad', backed='r')
# 2. Quick metadata check without loading data
print(f"Dataset: {adata.n_obs} cells × {adata.n_vars} genes")
# 3. Filter based on metadata
high_quality = adata[adata.obs['quality_score'] > 0.8]
# 4. Load filtered subset to memory
adata = high_quality.to_memory()
# 5. Convert to optimal storage types
adata.strings_to_categoricals()
if not issparse(adata.X):
density = np.count_nonzero(adata.X) / adata.X.size
if density < 0.5:
adata.X = csr_matrix(adata.X)
# 6. Store raw before filtering genes
adata.raw = adata.copy()
# 7. Filter to highly variable genes
adata = adata[:, adata.var['highly_variable']].copy()
# 8. Document processing
adata.uns['processing'] = {
'filtered': 'quality_score > 0.8',
'n_hvg': adata.n_vars,
'date': '2025-11-03'
}
# 9. Save optimized
adata.write_h5ad('processed.h5ad', compression='gzip')
```

View File

@@ -0,0 +1,396 @@
# Concatenating AnnData Objects
Combine multiple AnnData objects along either observations or variables axis.
## Basic Concatenation
### Concatenate along observations (stack cells/samples)
```python
import anndata as ad
import numpy as np
# Create multiple AnnData objects
adata1 = ad.AnnData(X=np.random.rand(100, 50))
adata2 = ad.AnnData(X=np.random.rand(150, 50))
adata3 = ad.AnnData(X=np.random.rand(200, 50))
# Concatenate along observations (axis=0, default)
adata_combined = ad.concat([adata1, adata2, adata3], axis=0)
print(adata_combined.shape) # (450, 50)
```
### Concatenate along variables (stack genes/features)
```python
# Create objects with same observations, different variables
adata1 = ad.AnnData(X=np.random.rand(100, 50))
adata2 = ad.AnnData(X=np.random.rand(100, 30))
adata3 = ad.AnnData(X=np.random.rand(100, 70))
# Concatenate along variables (axis=1)
adata_combined = ad.concat([adata1, adata2, adata3], axis=1)
print(adata_combined.shape) # (100, 150)
```
## Join Types
### Inner join (intersection)
Keep only variables/observations present in all objects.
```python
import pandas as pd
# Create objects with different variables
adata1 = ad.AnnData(
X=np.random.rand(100, 50),
var=pd.DataFrame(index=[f'Gene_{i}' for i in range(50)])
)
adata2 = ad.AnnData(
X=np.random.rand(150, 60),
var=pd.DataFrame(index=[f'Gene_{i}' for i in range(10, 70)])
)
# Inner join: only genes 10-49 are kept (overlap)
adata_inner = ad.concat([adata1, adata2], join='inner')
print(adata_inner.n_vars) # 40 genes (overlap)
```
### Outer join (union)
Keep all variables/observations, filling missing values.
```python
# Outer join: all genes are kept
adata_outer = ad.concat([adata1, adata2], join='outer')
print(adata_outer.n_vars) # 70 genes (union)
# Missing values are filled with appropriate defaults:
# - 0 for sparse matrices
# - NaN for dense matrices
```
### Fill values for outer joins
```python
# Specify fill value for missing data
adata_filled = ad.concat([adata1, adata2], join='outer', fill_value=0)
```
## Tracking Data Sources
### Add batch labels
```python
# Label which object each observation came from
adata_combined = ad.concat(
[adata1, adata2, adata3],
label='batch', # Column name for labels
keys=['batch1', 'batch2', 'batch3'] # Labels for each object
)
print(adata_combined.obs['batch'].value_counts())
# batch1 100
# batch2 150
# batch3 200
```
### Automatic batch labels
```python
# If keys not provided, uses integer indices
adata_combined = ad.concat(
[adata1, adata2, adata3],
label='dataset'
)
# dataset column contains: 0, 1, 2
```
## Merge Strategies
Control how metadata from different objects is combined using the `merge` parameter.
### merge=None (default for observations)
Exclude metadata on non-concatenation axis.
```python
# When concatenating observations, var metadata must match
adata1.var['gene_type'] = 'protein_coding'
adata2.var['gene_type'] = 'protein_coding'
# var is kept only if identical across all objects
adata_combined = ad.concat([adata1, adata2], merge=None)
```
### merge='same'
Keep metadata that is identical across all objects.
```python
adata1.var['chromosome'] = ['chr1'] * 25 + ['chr2'] * 25
adata2.var['chromosome'] = ['chr1'] * 25 + ['chr2'] * 25
adata1.var['type'] = 'protein_coding'
adata2.var['type'] = 'lncRNA' # Different
# 'chromosome' is kept (same), 'type' is excluded (different)
adata_combined = ad.concat([adata1, adata2], merge='same')
```
### merge='unique'
Keep metadata columns where each key has exactly one value.
```python
adata1.var['gene_id'] = [f'ENSG{i:05d}' for i in range(50)]
adata2.var['gene_id'] = [f'ENSG{i:05d}' for i in range(50)]
# gene_id is kept (unique values for each key)
adata_combined = ad.concat([adata1, adata2], merge='unique')
```
### merge='first'
Take values from the first object containing each key.
```python
adata1.var['description'] = ['Desc1'] * 50
adata2.var['description'] = ['Desc2'] * 50
# Uses descriptions from adata1
adata_combined = ad.concat([adata1, adata2], merge='first')
```
### merge='only'
Keep metadata that appears in only one object.
```python
adata1.var['adata1_specific'] = [1] * 50
adata2.var['adata2_specific'] = [2] * 50
# Both metadata columns are kept
adata_combined = ad.concat([adata1, adata2], merge='only')
```
## Handling Index Conflicts
### Make indices unique
```python
import pandas as pd
# Create objects with overlapping observation names
adata1 = ad.AnnData(
X=np.random.rand(3, 10),
obs=pd.DataFrame(index=['cell_1', 'cell_2', 'cell_3'])
)
adata2 = ad.AnnData(
X=np.random.rand(3, 10),
obs=pd.DataFrame(index=['cell_1', 'cell_2', 'cell_3'])
)
# Make indices unique by appending batch keys
adata_combined = ad.concat(
[adata1, adata2],
label='batch',
keys=['batch1', 'batch2'],
index_unique='_' # Separator for making indices unique
)
print(adata_combined.obs_names)
# ['cell_1_batch1', 'cell_2_batch1', 'cell_3_batch1',
# 'cell_1_batch2', 'cell_2_batch2', 'cell_3_batch2']
```
## Concatenating Layers
```python
# Objects with layers
adata1 = ad.AnnData(X=np.random.rand(100, 50))
adata1.layers['normalized'] = np.random.rand(100, 50)
adata1.layers['scaled'] = np.random.rand(100, 50)
adata2 = ad.AnnData(X=np.random.rand(150, 50))
adata2.layers['normalized'] = np.random.rand(150, 50)
adata2.layers['scaled'] = np.random.rand(150, 50)
# Layers are concatenated automatically if present in all objects
adata_combined = ad.concat([adata1, adata2])
print(adata_combined.layers.keys())
# dict_keys(['normalized', 'scaled'])
```
## Concatenating Multi-dimensional Annotations
### obsm/varm
```python
# Objects with embeddings
adata1.obsm['X_pca'] = np.random.rand(100, 50)
adata2.obsm['X_pca'] = np.random.rand(150, 50)
# obsm is concatenated along observation axis
adata_combined = ad.concat([adata1, adata2])
print(adata_combined.obsm['X_pca'].shape) # (250, 50)
```
### obsp/varp (pairwise annotations)
```python
from scipy.sparse import csr_matrix
# Pairwise matrices
adata1.obsp['connectivities'] = csr_matrix((100, 100))
adata2.obsp['connectivities'] = csr_matrix((150, 150))
# By default, obsp is NOT concatenated (set pairwise=True to include)
adata_combined = ad.concat([adata1, adata2])
# adata_combined.obsp is empty
# Include pairwise data (creates block diagonal matrix)
adata_combined = ad.concat([adata1, adata2], pairwise=True)
print(adata_combined.obsp['connectivities'].shape) # (250, 250)
```
## Concatenating uns (unstructured)
Unstructured metadata is merged recursively:
```python
adata1.uns['experiment'] = {'date': '2025-01-01', 'batch': 'A'}
adata2.uns['experiment'] = {'date': '2025-01-01', 'batch': 'B'}
# Using merge='unique' for uns
adata_combined = ad.concat([adata1, adata2], uns_merge='unique')
# 'date' is kept (same value), 'batch' might be excluded (different values)
```
## Lazy Concatenation (AnnCollection)
For very large datasets, use lazy concatenation that doesn't load all data:
```python
from anndata.experimental import AnnCollection
# Create collection from file paths (doesn't load data)
files = ['data1.h5ad', 'data2.h5ad', 'data3.h5ad']
collection = AnnCollection(
files,
join_obs='outer',
join_vars='inner',
label='dataset',
keys=['dataset1', 'dataset2', 'dataset3']
)
# Access data lazily
print(collection.n_obs) # Total observations
print(collection.obs.head()) # Metadata loaded, not X
# Convert to regular AnnData when needed (loads all data)
adata = collection.to_adata()
```
### Working with AnnCollection
```python
# Subset without loading data
subset = collection[collection.obs['cell_type'] == 'T cell']
# Iterate through datasets
for adata in collection:
print(adata.shape)
# Access specific dataset
first_dataset = collection[0]
```
## Concatenation on Disk
For datasets too large for memory, concatenate directly on disk:
```python
from anndata.experimental import concat_on_disk
# Concatenate without loading into memory
concat_on_disk(
['data1.h5ad', 'data2.h5ad', 'data3.h5ad'],
'combined.h5ad',
join='outer'
)
# Load result in backed mode
adata = ad.read_h5ad('combined.h5ad', backed='r')
```
## Common Concatenation Patterns
### Combine technical replicates
```python
# Multiple runs of the same samples
replicates = [adata_run1, adata_run2, adata_run3]
adata_combined = ad.concat(
replicates,
label='technical_replicate',
keys=['rep1', 'rep2', 'rep3'],
join='inner' # Keep only genes measured in all runs
)
```
### Combine batches from experiment
```python
# Different experimental batches
batches = [adata_batch1, adata_batch2, adata_batch3]
adata_combined = ad.concat(
batches,
label='batch',
keys=['batch1', 'batch2', 'batch3'],
join='outer' # Keep all genes
)
# Later: apply batch correction
```
### Merge multi-modal data
```python
# Different measurement modalities (e.g., RNA + protein)
adata_rna = ad.AnnData(X=np.random.rand(100, 2000))
adata_protein = ad.AnnData(X=np.random.rand(100, 50))
# Concatenate along variables to combine modalities
adata_multimodal = ad.concat([adata_rna, adata_protein], axis=1)
# Add labels to distinguish modalities
adata_multimodal.var['modality'] = ['RNA'] * 2000 + ['protein'] * 50
```
## Best Practices
1. **Check compatibility before concatenating**
```python
# Verify shapes are compatible
print([adata.n_vars for adata in [adata1, adata2, adata3]])
# Check variable names match
print([set(adata.var_names) for adata in [adata1, adata2, adata3]])
```
2. **Use appropriate join type**
- `inner`: When you need the same features across all samples (most stringent)
- `outer`: When you want to preserve all features (most inclusive)
3. **Track data sources**
Always use `label` and `keys` to track which observations came from which dataset.
4. **Consider memory usage**
- For large datasets, use `AnnCollection` or `concat_on_disk`
- Consider backed mode for the result
5. **Handle batch effects**
Concatenation combines data but doesn't correct for batch effects. Apply batch correction after concatenation:
```python
# After concatenation, apply batch correction
import scanpy as sc
sc.pp.combat(adata_combined, key='batch')
```
6. **Validate results**
```python
# Check dimensions
print(adata_combined.shape)
# Check batch distribution
print(adata_combined.obs['batch'].value_counts())
# Verify metadata integrity
print(adata_combined.var.head())
print(adata_combined.obs.head())
```

View File

@@ -1,478 +0,0 @@
# AnnData Concatenation Guide
## Overview
The `concat()` function combines multiple AnnData objects through two fundamental operations:
1. **Concatenation**: Stacking sub-elements in order
2. **Merging**: Combining collections into one result
## Basic Concatenation
### Syntax
```python
import anndata as ad
combined = ad.concat(
adatas, # List of AnnData objects
axis=0, # 0=observations, 1=variables
join='inner', # 'inner' or 'outer'
merge=None, # Merge strategy for non-concat axis
label=None, # Column name for source tracking
keys=None, # Dataset identifiers
index_unique=None, # Separator for unique indices
fill_value=None, # Fill value for missing data
pairwise=False # Include pairwise matrices
)
```
### Concatenating Observations (Cells)
```python
# Most common: combining multiple samples/batches
adata1 = ad.AnnData(np.random.rand(100, 2000))
adata2 = ad.AnnData(np.random.rand(150, 2000))
adata3 = ad.AnnData(np.random.rand(80, 2000))
combined = ad.concat([adata1, adata2, adata3], axis=0)
# Result: (330 observations, 2000 variables)
```
### Concatenating Variables (Genes)
```python
# Less common: combining different feature sets
adata1 = ad.AnnData(np.random.rand(100, 1000))
adata2 = ad.AnnData(np.random.rand(100, 500))
combined = ad.concat([adata1, adata2], axis=1)
# Result: (100 observations, 1500 variables)
```
## Join Strategies
### Inner Join (Intersection)
Keeps only shared features across all objects.
```python
# Datasets with different genes
adata1 = ad.AnnData(
np.random.rand(100, 2000),
var=pd.DataFrame(index=[f'Gene_{i}' for i in range(2000)])
)
adata2 = ad.AnnData(
np.random.rand(150, 1800),
var=pd.DataFrame(index=[f'Gene_{i}' for i in range(200, 2000)])
)
# Inner join: only genes present in both
combined = ad.concat([adata1, adata2], join='inner')
# Result: (250 observations, 1800 variables)
# Only Gene_200 through Gene_1999
```
**Use when:**
- You want to analyze only features measured in all datasets
- Missing features would compromise analysis
- You need a complete case analysis
**Trade-offs:**
- May lose many features
- Ensures no missing data
- Smaller result size
### Outer Join (Union)
Keeps all features from all objects, padding with fill values (default 0).
```python
# Outer join: all genes from both datasets
combined = ad.concat([adata1, adata2], join='outer')
# Result: (250 observations, 2000 variables)
# Missing values filled with 0
# Custom fill value
combined = ad.concat([adata1, adata2], join='outer', fill_value=np.nan)
```
**Use when:**
- You want to preserve all features
- Sparse data is acceptable
- Features are independent
**Trade-offs:**
- Introduces zeros/missing values
- Larger result size
- May need imputation
## Merge Strategies
Merge strategies control how elements on the non-concatenation axis are combined.
### merge=None (Default)
Excludes all non-concatenation axis elements.
```python
# Both datasets have var annotations
adata1.var['gene_type'] = ['protein_coding'] * 2000
adata2.var['gene_type'] = ['protein_coding'] * 1800
# merge=None: var annotations excluded
combined = ad.concat([adata1, adata2], merge=None)
assert 'gene_type' not in combined.var.columns
```
**Use when:**
- Annotations are dataset-specific
- You'll add new annotations after merging
### merge='same'
Keeps only annotations with identical values across datasets.
```python
# Same annotation values
adata1.var['chromosome'] = ['chr1'] * 1000 + ['chr2'] * 1000
adata2.var['chromosome'] = ['chr1'] * 900 + ['chr2'] * 900
# merge='same': keeps chromosome annotation
combined = ad.concat([adata1, adata2], merge='same')
assert 'chromosome' in combined.var.columns
```
**Use when:**
- Annotations should be consistent
- You want to validate consistency
- Shared metadata is important
**Note:** Comparison occurs after index alignment - only shared indices need to match.
### merge='unique'
Includes annotations with a single possible value.
```python
# Unique values per gene
adata1.var['ensembl_id'] = [f'ENSG{i:08d}' for i in range(2000)]
adata2.var['ensembl_id'] = [f'ENSG{i:08d}' for i in range(2000)]
# merge='unique': keeps ensembl_id
combined = ad.concat([adata1, adata2], merge='unique')
```
**Use when:**
- Each feature has a unique identifier
- Annotations are feature-specific
### merge='first'
Takes the first occurrence of each annotation.
```python
# Different annotation versions
adata1.var['description'] = ['desc1'] * 2000
adata2.var['description'] = ['desc2'] * 2000
# merge='first': uses adata1's descriptions
combined = ad.concat([adata1, adata2], merge='first')
# Uses descriptions from adata1
```
**Use when:**
- One dataset has authoritative annotations
- Order matters
- You need a simple resolution strategy
### merge='only'
Retains annotations appearing in exactly one object.
```python
# Dataset-specific annotations
adata1.var['dataset1_specific'] = ['value'] * 2000
adata2.var['dataset2_specific'] = ['value'] * 2000
# merge='only': keeps both (no conflicts)
combined = ad.concat([adata1, adata2], merge='only')
```
**Use when:**
- Datasets have non-overlapping annotations
- You want to preserve all unique metadata
## Source Tracking
### Using label
Add a categorical column to track data origin.
```python
combined = ad.concat(
[adata1, adata2, adata3],
label='batch'
)
# Creates obs['batch'] with values 0, 1, 2
print(combined.obs['batch'].cat.categories) # ['0', '1', '2']
```
### Using keys
Provide custom names for source tracking.
```python
combined = ad.concat(
[adata1, adata2, adata3],
label='study',
keys=['control', 'treatment_a', 'treatment_b']
)
# Creates obs['study'] with custom names
print(combined.obs['study'].unique()) # ['control', 'treatment_a', 'treatment_b']
```
### Making Indices Unique
Append source identifiers to duplicate observation names.
```python
# Both datasets have cells named "Cell_0", "Cell_1", etc.
adata1.obs_names = [f'Cell_{i}' for i in range(100)]
adata2.obs_names = [f'Cell_{i}' for i in range(150)]
# index_unique adds suffix
combined = ad.concat(
[adata1, adata2],
keys=['batch1', 'batch2'],
index_unique='-'
)
# Results in: Cell_0-batch1, Cell_0-batch2, etc.
print(combined.obs_names[:5])
```
## Handling Different Attributes
### X Matrix and Layers
Follows join strategy. Missing values filled according to `fill_value`.
```python
# Both have layers
adata1.layers['counts'] = adata1.X.copy()
adata2.layers['counts'] = adata2.X.copy()
# Concatenates both X and layers
combined = ad.concat([adata1, adata2])
assert 'counts' in combined.layers
```
### obs and var DataFrames
- **obs**: Concatenated along concatenation axis
- **var**: Handled by merge strategy
```python
adata1.obs['cell_type'] = ['B cell'] * 100
adata2.obs['cell_type'] = ['T cell'] * 150
combined = ad.concat([adata1, adata2])
# obs['cell_type'] preserved for all cells
```
### obsm and varm
Multi-dimensional annotations follow same rules as layers.
```python
adata1.obsm['X_pca'] = np.random.rand(100, 50)
adata2.obsm['X_pca'] = np.random.rand(150, 50)
combined = ad.concat([adata1, adata2])
# obsm['X_pca'] concatenated: shape (250, 50)
```
### obsp and varp
Pairwise matrices excluded by default. Enable with `pairwise=True`.
```python
# Distance matrices
adata1.obsp['distances'] = np.random.rand(100, 100)
adata2.obsp['distances'] = np.random.rand(150, 150)
# Excluded by default
combined = ad.concat([adata1, adata2])
assert 'distances' not in combined.obsp
# Include if needed
combined = ad.concat([adata1, adata2], pairwise=True)
# Results in padded block diagonal matrix
```
### uns Dictionary
Merged recursively, applying merge strategy at any nesting depth.
```python
adata1.uns['experiment'] = {'date': '2024-01', 'lab': 'A'}
adata2.uns['experiment'] = {'date': '2024-02', 'lab': 'A'}
# merge='same' keeps 'lab', excludes 'date'
combined = ad.concat([adata1, adata2], merge='same')
# combined.uns['experiment'] = {'lab': 'A'}
```
## Advanced Patterns
### Batch Integration Pipeline
```python
import anndata as ad
# Load batches
batches = [
ad.read_h5ad(f'batch_{i}.h5ad')
for i in range(5)
]
# Concatenate with tracking
combined = ad.concat(
batches,
axis=0,
join='outer',
merge='first',
label='batch_id',
keys=[f'batch_{i}' for i in range(5)],
index_unique='-'
)
# Add batch effects
combined.obs['batch_numeric'] = combined.obs['batch_id'].cat.codes
```
### Multi-Study Meta-Analysis
```python
# Different studies with varying gene coverage
studies = {
'study_a': ad.read_h5ad('study_a.h5ad'),
'study_b': ad.read_h5ad('study_b.h5ad'),
'study_c': ad.read_h5ad('study_c.h5ad')
}
# Outer join to keep all genes
combined = ad.concat(
list(studies.values()),
axis=0,
join='outer',
label='study',
keys=list(studies.keys()),
merge='unique',
fill_value=0
)
# Track coverage
for study in studies:
n_genes = studies[study].n_vars
combined.uns[f'{study}_n_genes'] = n_genes
```
### Incremental Concatenation
```python
# For many datasets, concatenate in batches
chunk_size = 10
all_files = [f'dataset_{i}.h5ad' for i in range(100)]
# Process in chunks
result = None
for i in range(0, len(all_files), chunk_size):
chunk_files = all_files[i:i+chunk_size]
chunk_adatas = [ad.read_h5ad(f) for f in chunk_files]
chunk_combined = ad.concat(chunk_adatas)
if result is None:
result = chunk_combined
else:
result = ad.concat([result, chunk_combined])
```
### Memory-Efficient On-Disk Concatenation
```python
# Experimental feature for large datasets
from anndata.experimental import concat_on_disk
files = ['dataset1.h5ad', 'dataset2.h5ad', 'dataset3.h5ad']
concat_on_disk(
files,
'combined.h5ad',
join='outer'
)
# Read result in backed mode
combined = ad.read_h5ad('combined.h5ad', backed='r')
```
## Troubleshooting
### Issue: Dimension Mismatch
```python
# Error: shapes don't match
adata1 = ad.AnnData(np.random.rand(100, 2000))
adata2 = ad.AnnData(np.random.rand(150, 1500))
# Solution: use outer join
combined = ad.concat([adata1, adata2], join='outer')
```
### Issue: Memory Error
```python
# Problem: too many large objects in memory
large_adatas = [ad.read_h5ad(f) for f in many_files]
# Solution: read and concatenate incrementally
result = None
for file in many_files:
adata = ad.read_h5ad(file)
if result is None:
result = adata
else:
result = ad.concat([result, adata])
del adata # Free memory
```
### Issue: Duplicate Indices
```python
# Problem: same cell names in different batches
# Solution: use index_unique
combined = ad.concat(
[adata1, adata2],
keys=['batch1', 'batch2'],
index_unique='-'
)
```
### Issue: Lost Annotations
```python
# Problem: annotations disappear
adata1.var['important'] = values1
adata2.var['important'] = values2
combined = ad.concat([adata1, adata2]) # merge=None by default
# Solution: use appropriate merge strategy
combined = ad.concat([adata1, adata2], merge='first')
```
## Performance Tips
1. **Pre-align indices**: Ensure consistent naming before concatenation
2. **Use sparse matrices**: Convert to sparse before concatenating
3. **Batch operations**: Concatenate in groups for many datasets
4. **Choose inner join**: When possible, to reduce result size
5. **Use categoricals**: Convert string annotations before concatenating
6. **Consider on-disk**: For very large datasets, use `concat_on_disk`

View File

@@ -0,0 +1,314 @@
# AnnData Object Structure
The AnnData object stores a data matrix with associated annotations, providing a flexible framework for managing experimental data and metadata.
## Core Components
### X (Data Matrix)
The primary data matrix with shape (n_obs, n_vars) storing experimental measurements.
```python
import anndata as ad
import numpy as np
# Create with dense array
adata = ad.AnnData(X=np.random.rand(100, 2000))
# Create with sparse matrix (recommended for large, sparse data)
from scipy.sparse import csr_matrix
sparse_data = csr_matrix(np.random.rand(100, 2000))
adata = ad.AnnData(X=sparse_data)
```
Access data:
```python
# Full matrix (caution with large datasets)
full_data = adata.X
# Single observation
obs_data = adata.X[0, :]
# Single variable across all observations
var_data = adata.X[:, 0]
```
### obs (Observation Annotations)
DataFrame storing metadata about observations (rows). Each row corresponds to one observation in X.
```python
import pandas as pd
# Create AnnData with observation metadata
obs_df = pd.DataFrame({
'cell_type': ['T cell', 'B cell', 'Monocyte'],
'treatment': ['control', 'treated', 'control'],
'timepoint': [0, 24, 24]
}, index=['cell_1', 'cell_2', 'cell_3'])
adata = ad.AnnData(X=np.random.rand(3, 100), obs=obs_df)
# Access observation metadata
print(adata.obs['cell_type'])
print(adata.obs.loc['cell_1'])
```
### var (Variable Annotations)
DataFrame storing metadata about variables (columns). Each row corresponds to one variable in X.
```python
# Create AnnData with variable metadata
var_df = pd.DataFrame({
'gene_name': ['ACTB', 'GAPDH', 'TP53'],
'chromosome': ['7', '12', '17'],
'highly_variable': [True, False, True]
}, index=['ENSG00001', 'ENSG00002', 'ENSG00003'])
adata = ad.AnnData(X=np.random.rand(100, 3), var=var_df)
# Access variable metadata
print(adata.var['gene_name'])
print(adata.var.loc['ENSG00001'])
```
### layers (Alternative Data Representations)
Dictionary storing alternative matrices with the same dimensions as X.
```python
# Store raw counts, normalized data, and scaled data
adata = ad.AnnData(X=np.random.rand(100, 2000))
adata.layers['raw_counts'] = np.random.randint(0, 100, (100, 2000))
adata.layers['normalized'] = adata.X / np.sum(adata.X, axis=1, keepdims=True)
adata.layers['scaled'] = (adata.X - adata.X.mean()) / adata.X.std()
# Access layers
raw_data = adata.layers['raw_counts']
normalized_data = adata.layers['normalized']
```
Common layer uses:
- `raw_counts`: Original count data before normalization
- `normalized`: Log-normalized or TPM values
- `scaled`: Z-scored values for analysis
- `imputed`: Data after imputation
### obsm (Multi-dimensional Observation Annotations)
Dictionary storing multi-dimensional arrays aligned to observations.
```python
# Store PCA coordinates and UMAP embeddings
adata.obsm['X_pca'] = np.random.rand(100, 50) # 50 principal components
adata.obsm['X_umap'] = np.random.rand(100, 2) # 2D UMAP coordinates
adata.obsm['X_tsne'] = np.random.rand(100, 2) # 2D t-SNE coordinates
# Access embeddings
pca_coords = adata.obsm['X_pca']
umap_coords = adata.obsm['X_umap']
```
Common obsm uses:
- `X_pca`: Principal component coordinates
- `X_umap`: UMAP embedding coordinates
- `X_tsne`: t-SNE embedding coordinates
- `X_diffmap`: Diffusion map coordinates
- `protein_expression`: Protein abundance measurements (CITE-seq)
### varm (Multi-dimensional Variable Annotations)
Dictionary storing multi-dimensional arrays aligned to variables.
```python
# Store PCA loadings
adata.varm['PCs'] = np.random.rand(2000, 50) # Loadings for 50 components
adata.varm['gene_modules'] = np.random.rand(2000, 10) # Gene module scores
# Access loadings
pc_loadings = adata.varm['PCs']
```
Common varm uses:
- `PCs`: Principal component loadings
- `gene_modules`: Gene co-expression module assignments
### obsp (Pairwise Observation Relationships)
Dictionary storing sparse matrices representing relationships between observations.
```python
from scipy.sparse import csr_matrix
# Store k-nearest neighbor graph
n_obs = 100
knn_graph = csr_matrix(np.random.rand(n_obs, n_obs) > 0.95)
adata.obsp['connectivities'] = knn_graph
adata.obsp['distances'] = csr_matrix(np.random.rand(n_obs, n_obs))
# Access graphs
knn_connections = adata.obsp['connectivities']
distances = adata.obsp['distances']
```
Common obsp uses:
- `connectivities`: Cell-cell neighborhood graph
- `distances`: Pairwise distances between cells
### varp (Pairwise Variable Relationships)
Dictionary storing sparse matrices representing relationships between variables.
```python
# Store gene-gene correlation matrix
n_vars = 2000
gene_corr = csr_matrix(np.random.rand(n_vars, n_vars) > 0.99)
adata.varp['correlations'] = gene_corr
# Access correlations
gene_correlations = adata.varp['correlations']
```
### uns (Unstructured Annotations)
Dictionary storing arbitrary unstructured metadata.
```python
# Store analysis parameters and results
adata.uns['experiment_date'] = '2025-11-03'
adata.uns['pca'] = {
'variance_ratio': [0.15, 0.10, 0.08],
'params': {'n_comps': 50}
}
adata.uns['neighbors'] = {
'params': {'n_neighbors': 15, 'method': 'umap'},
'connectivities_key': 'connectivities'
}
# Access unstructured data
exp_date = adata.uns['experiment_date']
pca_params = adata.uns['pca']['params']
```
Common uns uses:
- Analysis parameters and settings
- Color palettes for plotting
- Cluster information
- Tool-specific metadata
### raw (Original Data Snapshot)
Optional attribute preserving the original data matrix and variable annotations before filtering.
```python
# Create AnnData and store raw state
adata = ad.AnnData(X=np.random.rand(100, 5000))
adata.var['gene_name'] = [f'Gene_{i}' for i in range(5000)]
# Store raw state before filtering
adata.raw = adata.copy()
# Filter to highly variable genes
highly_variable_mask = np.random.rand(5000) > 0.5
adata = adata[:, highly_variable_mask]
# Access original data
original_matrix = adata.raw.X
original_var = adata.raw.var
```
## Object Properties
```python
# Dimensions
n_observations = adata.n_obs
n_variables = adata.n_vars
shape = adata.shape # (n_obs, n_vars)
# Index information
obs_names = adata.obs_names # Observation identifiers
var_names = adata.var_names # Variable identifiers
# Storage mode
is_view = adata.is_view # True if this is a view of another object
is_backed = adata.isbacked # True if backed by on-disk storage
filename = adata.filename # Path to backing file (if backed)
```
## Creating AnnData Objects
### From arrays and DataFrames
```python
import anndata as ad
import numpy as np
import pandas as pd
# Minimal creation
X = np.random.rand(100, 2000)
adata = ad.AnnData(X)
# With metadata
obs = pd.DataFrame({'cell_type': ['A', 'B'] * 50}, index=[f'cell_{i}' for i in range(100)])
var = pd.DataFrame({'gene_name': [f'Gene_{i}' for i in range(2000)]}, index=[f'ENSG{i:05d}' for i in range(2000)])
adata = ad.AnnData(X=X, obs=obs, var=var)
# With all components
adata = ad.AnnData(
X=X,
obs=obs,
var=var,
layers={'raw': np.random.randint(0, 100, (100, 2000))},
obsm={'X_pca': np.random.rand(100, 50)},
uns={'experiment': 'test'}
)
```
### From DataFrame
```python
# Create from pandas DataFrame (genes as columns, cells as rows)
df = pd.DataFrame(
np.random.rand(100, 50),
columns=[f'Gene_{i}' for i in range(50)],
index=[f'Cell_{i}' for i in range(100)]
)
adata = ad.AnnData(df)
```
## Data Access Patterns
### Vector extraction
```python
# Get observation annotation as array
cell_types = adata.obs_vector('cell_type')
# Get variable values across observations
gene_expression = adata.obs_vector('ACTB') # If ACTB is in var_names
# Get variable annotation as array
gene_names = adata.var_vector('gene_name')
```
### Subsetting
```python
# By index
subset = adata[0:10, 0:100] # First 10 obs, first 100 vars
# By name
subset = adata[['cell_1', 'cell_2'], ['ACTB', 'GAPDH']]
# By boolean mask
high_count_cells = adata.obs['total_counts'] > 1000
subset = adata[high_count_cells, :]
# By observation metadata
t_cells = adata[adata.obs['cell_type'] == 'T cell']
```
## Memory Considerations
The AnnData structure is designed for memory efficiency:
- Sparse matrices reduce memory for sparse data
- Views avoid copying data when possible
- Backed mode enables working with data larger than RAM
- Categorical annotations reduce memory for discrete values
```python
# Convert strings to categoricals (more memory efficient)
adata.obs['cell_type'] = adata.obs['cell_type'].astype('category')
adata.strings_to_categoricals()
# Check if object is a view (doesn't own data)
if adata.is_view:
adata = adata.copy() # Create independent copy
```

View File

@@ -0,0 +1,404 @@
# Input/Output Operations
AnnData provides comprehensive I/O functionality for reading and writing data in various formats.
## Native Formats
### H5AD (HDF5-based)
The recommended native format for AnnData objects, providing efficient storage and fast access.
#### Writing H5AD files
```python
import anndata as ad
# Write to file
adata.write_h5ad('data.h5ad')
# Write with compression
adata.write_h5ad('data.h5ad', compression='gzip')
# Write with specific compression level (0-9, higher = more compression)
adata.write_h5ad('data.h5ad', compression='gzip', compression_opts=9)
```
#### Reading H5AD files
```python
# Read entire file into memory
adata = ad.read_h5ad('data.h5ad')
# Read in backed mode (lazy loading for large files)
adata = ad.read_h5ad('data.h5ad', backed='r') # Read-only
adata = ad.read_h5ad('data.h5ad', backed='r+') # Read-write
# Backed mode enables working with datasets larger than RAM
# Only accessed data is loaded into memory
```
#### Backed mode operations
```python
# Open in backed mode
adata = ad.read_h5ad('large_dataset.h5ad', backed='r')
# Access metadata without loading X into memory
print(adata.obs.head())
print(adata.var.head())
# Subset operations create views
subset = adata[:100, :500] # View, no data loaded
# Load specific data into memory
X_subset = subset.X[:] # Now loads this subset
# Convert entire backed object to memory
adata_memory = adata.to_memory()
```
### Zarr
Hierarchical array storage format, optimized for cloud storage and parallel I/O.
#### Writing Zarr
```python
# Write to Zarr store
adata.write_zarr('data.zarr')
# Write with specific chunks (important for performance)
adata.write_zarr('data.zarr', chunks=(100, 100))
```
#### Reading Zarr
```python
# Read Zarr store
adata = ad.read_zarr('data.zarr')
```
#### Remote Zarr access
```python
import fsspec
# Access Zarr from S3
store = fsspec.get_mapper('s3://bucket-name/data.zarr')
adata = ad.read_zarr(store)
# Access Zarr from URL
store = fsspec.get_mapper('https://example.com/data.zarr')
adata = ad.read_zarr(store)
```
## Alternative Input Formats
### CSV/TSV
```python
# Read CSV (genes as columns, cells as rows)
adata = ad.read_csv('data.csv')
# Read with custom delimiter
adata = ad.read_csv('data.tsv', delimiter='\t')
# Specify that first column is row names
adata = ad.read_csv('data.csv', first_column_names=True)
```
### Excel
```python
# Read Excel file
adata = ad.read_excel('data.xlsx')
# Read specific sheet
adata = ad.read_excel('data.xlsx', sheet='Sheet1')
```
### Matrix Market (MTX)
Common format for sparse matrices in genomics.
```python
# Read MTX with associated files
# Requires: matrix.mtx, genes.tsv, barcodes.tsv
adata = ad.read_mtx('matrix.mtx')
# Read with custom gene and barcode files
adata = ad.read_mtx(
'matrix.mtx',
var_names='genes.tsv',
obs_names='barcodes.tsv'
)
# Transpose if needed (MTX often has genes as rows)
adata = adata.T
```
### 10X Genomics formats
```python
# Read 10X h5 format
adata = ad.read_10x_h5('filtered_feature_bc_matrix.h5')
# Read 10X MTX directory
adata = ad.read_10x_mtx('filtered_feature_bc_matrix/')
# Specify genome if multiple present
adata = ad.read_10x_h5('data.h5', genome='GRCh38')
```
### Loom
```python
# Read Loom file
adata = ad.read_loom('data.loom')
# Read with specific observation and variable annotations
adata = ad.read_loom(
'data.loom',
obs_names='CellID',
var_names='Gene'
)
```
### Text files
```python
# Read generic text file
adata = ad.read_text('data.txt', delimiter='\t')
# Read with custom parameters
adata = ad.read_text(
'data.txt',
delimiter=',',
first_column_names=True,
dtype='float32'
)
```
### UMI tools
```python
# Read UMI tools format
adata = ad.read_umi_tools('counts.tsv')
```
### HDF5 (generic)
```python
# Read from HDF5 file (not h5ad format)
adata = ad.read_hdf('data.h5', key='dataset')
```
## Alternative Output Formats
### CSV
```python
# Write to CSV files (creates multiple files)
adata.write_csvs('output_dir/')
# This creates:
# - output_dir/X.csv (expression matrix)
# - output_dir/obs.csv (observation annotations)
# - output_dir/var.csv (variable annotations)
# - output_dir/uns.csv (unstructured annotations, if possible)
# Skip certain components
adata.write_csvs('output_dir/', skip_data=True) # Skip X matrix
```
### Loom
```python
# Write to Loom format
adata.write_loom('output.loom')
```
## Reading Specific Elements
For fine-grained control, read specific elements from storage:
```python
from anndata import read_elem
# Read just observation annotations
obs = read_elem('data.h5ad/obs')
# Read specific layer
layer = read_elem('data.h5ad/layers/normalized')
# Read unstructured data element
params = read_elem('data.h5ad/uns/pca_params')
```
## Writing Specific Elements
```python
from anndata import write_elem
import h5py
# Write element to existing file
with h5py.File('data.h5ad', 'a') as f:
write_elem(f, 'new_layer', adata.X.copy())
```
## Lazy Operations
For very large datasets, use lazy reading to avoid loading entire datasets:
```python
from anndata.experimental import read_elem_lazy
# Lazy read (returns dask array or similar)
X_lazy = read_elem_lazy('large_data.h5ad/X')
# Compute only when needed
subset = X_lazy[:100, :100].compute()
```
## Common I/O Patterns
### Convert between formats
```python
# MTX to H5AD
adata = ad.read_mtx('matrix.mtx').T
adata.write_h5ad('data.h5ad')
# CSV to H5AD
adata = ad.read_csv('data.csv')
adata.write_h5ad('data.h5ad')
# H5AD to Zarr
adata = ad.read_h5ad('data.h5ad')
adata.write_zarr('data.zarr')
```
### Load metadata without data
```python
# Backed mode allows inspecting metadata without loading X
adata = ad.read_h5ad('large_file.h5ad', backed='r')
print(f"Dataset contains {adata.n_obs} observations and {adata.n_vars} variables")
print(adata.obs.columns)
print(adata.var.columns)
# X is not loaded into memory
```
### Append to existing file
```python
# Open in read-write mode
adata = ad.read_h5ad('data.h5ad', backed='r+')
# Modify metadata
adata.obs['new_column'] = values
# Changes are written to disk
```
### Download from URL
```python
import anndata as ad
# Read directly from URL (for h5ad files)
url = 'https://example.com/data.h5ad'
adata = ad.read_h5ad(url, backed='r') # Streaming access
# For other formats, download first
import urllib.request
urllib.request.urlretrieve(url, 'local_file.h5ad')
adata = ad.read_h5ad('local_file.h5ad')
```
## Performance Tips
### Reading
- Use `backed='r'` for large files you only need to query
- Use `backed='r+'` if you need to modify metadata without loading all data
- H5AD format is generally fastest for random access
- Zarr is better for cloud storage and parallel access
- Consider compression for storage, but note it may slow down reading
### Writing
- Use compression for long-term storage: `compression='gzip'` or `compression='lzf'`
- LZF compression is faster but compresses less than GZIP
- For Zarr, tune chunk sizes based on access patterns:
- Larger chunks for sequential reads
- Smaller chunks for random access
- Convert string columns to categorical before writing (smaller files)
### Memory management
```python
# Convert strings to categoricals (reduces file size and memory)
adata.strings_to_categoricals()
adata.write_h5ad('data.h5ad')
# Use sparse matrices for sparse data
from scipy.sparse import csr_matrix
if isinstance(adata.X, np.ndarray):
density = np.count_nonzero(adata.X) / adata.X.size
if density < 0.5: # If more than 50% zeros
adata.X = csr_matrix(adata.X)
```
## Handling Large Datasets
### Strategy 1: Backed mode
```python
# Work with dataset larger than RAM
adata = ad.read_h5ad('100GB_file.h5ad', backed='r')
# Filter based on metadata (fast, no data loading)
filtered = adata[adata.obs['quality_score'] > 0.8]
# Load filtered subset into memory
adata_memory = filtered.to_memory()
```
### Strategy 2: Chunked processing
```python
# Process data in chunks
adata = ad.read_h5ad('large_file.h5ad', backed='r')
chunk_size = 1000
results = []
for i in range(0, adata.n_obs, chunk_size):
chunk = adata[i:i+chunk_size, :].to_memory()
# Process chunk
result = process(chunk)
results.append(result)
```
### Strategy 3: Use AnnCollection
```python
from anndata.experimental import AnnCollection
# Create collection without loading data
adatas = [f'dataset_{i}.h5ad' for i in range(10)]
collection = AnnCollection(
adatas,
join_obs='inner',
join_vars='inner'
)
# Process collection lazily
# Data is loaded only when accessed
```
## Common Issues and Solutions
### Issue: Out of memory when reading
**Solution**: Use backed mode or read in chunks
```python
adata = ad.read_h5ad('file.h5ad', backed='r')
```
### Issue: Slow reading from cloud storage
**Solution**: Use Zarr format with appropriate chunking
```python
adata.write_zarr('data.zarr', chunks=(1000, 1000))
```
### Issue: Large file sizes
**Solution**: Use compression and convert to sparse/categorical
```python
adata.strings_to_categoricals()
from scipy.sparse import csr_matrix
adata.X = csr_matrix(adata.X)
adata.write_h5ad('compressed.h5ad', compression='gzip')
```
### Issue: Cannot modify backed object
**Solution**: Either load to memory or open in 'r+' mode
```python
# Option 1: Load to memory
adata = adata.to_memory()
# Option 2: Open in read-write mode
adata = ad.read_h5ad('file.h5ad', backed='r+')
```

View File

@@ -0,0 +1,516 @@
# Data Manipulation
Operations for transforming, subsetting, and manipulating AnnData objects.
## Subsetting
### By indices
```python
import anndata as ad
import numpy as np
adata = ad.AnnData(X=np.random.rand(1000, 2000))
# Integer indices
subset = adata[0:100, 0:500] # First 100 obs, first 500 vars
# List of indices
obs_indices = [0, 10, 20, 30, 40]
var_indices = [0, 1, 2, 3, 4]
subset = adata[obs_indices, var_indices]
# Single observation or variable
single_obs = adata[0, :]
single_var = adata[:, 0]
```
### By names
```python
import pandas as pd
# Create with named indices
obs_names = [f'cell_{i}' for i in range(1000)]
var_names = [f'gene_{i}' for i in range(2000)]
adata = ad.AnnData(
X=np.random.rand(1000, 2000),
obs=pd.DataFrame(index=obs_names),
var=pd.DataFrame(index=var_names)
)
# Subset by observation names
subset = adata[['cell_0', 'cell_1', 'cell_2'], :]
# Subset by variable names
subset = adata[:, ['gene_0', 'gene_10', 'gene_20']]
# Both axes
subset = adata[['cell_0', 'cell_1'], ['gene_0', 'gene_1']]
```
### By boolean masks
```python
# Create boolean masks
high_count_obs = np.random.rand(1000) > 0.5
high_var_genes = np.random.rand(2000) > 0.7
# Subset using masks
subset = adata[high_count_obs, :]
subset = adata[:, high_var_genes]
subset = adata[high_count_obs, high_var_genes]
```
### By metadata conditions
```python
# Add metadata
adata.obs['cell_type'] = np.random.choice(['A', 'B', 'C'], 1000)
adata.obs['quality_score'] = np.random.rand(1000)
adata.var['highly_variable'] = np.random.rand(2000) > 0.8
# Filter by cell type
t_cells = adata[adata.obs['cell_type'] == 'A']
# Filter by multiple conditions
high_quality_a_cells = adata[
(adata.obs['cell_type'] == 'A') &
(adata.obs['quality_score'] > 0.7)
]
# Filter by variable metadata
hv_genes = adata[:, adata.var['highly_variable']]
# Complex conditions
filtered = adata[
(adata.obs['quality_score'] > 0.5) &
(adata.obs['cell_type'].isin(['A', 'B'])),
adata.var['highly_variable']
]
```
## Transposition
```python
# Transpose AnnData object (swap observations and variables)
adata_T = adata.T
# Shape changes
print(adata.shape) # (1000, 2000)
print(adata_T.shape) # (2000, 1000)
# obs and var are swapped
print(adata.obs.head()) # Observation metadata
print(adata_T.var.head()) # Same data, now as variable metadata
# Useful when data is in opposite orientation
# Common with some file formats where genes are rows
```
## Copying
### Full copy
```python
# Create independent copy
adata_copy = adata.copy()
# Modifications to copy don't affect original
adata_copy.obs['new_column'] = 1
print('new_column' in adata.obs.columns) # False
```
### Shallow copy
```python
# View (doesn't copy data, modifications affect original)
adata_view = adata[0:100, :]
# Check if object is a view
print(adata_view.is_view) # True
# Convert view to independent copy
adata_independent = adata_view.copy()
print(adata_independent.is_view) # False
```
## Renaming
### Rename observations and variables
```python
# Rename all observations
adata.obs_names = [f'new_cell_{i}' for i in range(adata.n_obs)]
# Rename all variables
adata.var_names = [f'new_gene_{i}' for i in range(adata.n_vars)]
# Make names unique (add suffix to duplicates)
adata.obs_names_make_unique()
adata.var_names_make_unique()
```
### Rename categories
```python
# Create categorical column
adata.obs['cell_type'] = pd.Categorical(['A', 'B', 'C'] * 333 + ['A'])
# Rename categories
adata.rename_categories('cell_type', ['Type_A', 'Type_B', 'Type_C'])
# Or using dictionary
adata.rename_categories('cell_type', {
'Type_A': 'T_cell',
'Type_B': 'B_cell',
'Type_C': 'Monocyte'
})
```
## Type Conversions
### Strings to categoricals
```python
# Convert string columns to categorical (more memory efficient)
adata.obs['cell_type'] = ['TypeA', 'TypeB'] * 500
adata.obs['tissue'] = ['brain', 'liver'] * 500
# Convert all string columns to categorical
adata.strings_to_categoricals()
print(adata.obs['cell_type'].dtype) # category
print(adata.obs['tissue'].dtype) # category
```
### Sparse to dense and vice versa
```python
from scipy.sparse import csr_matrix
# Dense to sparse
if not isinstance(adata.X, csr_matrix):
adata.X = csr_matrix(adata.X)
# Sparse to dense
if isinstance(adata.X, csr_matrix):
adata.X = adata.X.toarray()
# Convert layer
adata.layers['normalized'] = csr_matrix(adata.layers['normalized'])
```
## Chunked Operations
Process large datasets in chunks:
```python
# Iterate through data in chunks
chunk_size = 100
for chunk in adata.chunked_X(chunk_size):
# Process chunk
result = process_chunk(chunk)
```
## Extracting Vectors
### Get observation vectors
```python
# Get observation metadata as array
cell_types = adata.obs_vector('cell_type')
# Get gene expression across observations
actb_expression = adata.obs_vector('ACTB') # If ACTB in var_names
```
### Get variable vectors
```python
# Get variable metadata as array
gene_names = adata.var_vector('gene_name')
```
## Adding/Modifying Data
### Add observations
```python
# Create new observations
new_obs = ad.AnnData(X=np.random.rand(100, adata.n_vars))
new_obs.var_names = adata.var_names
# Concatenate with existing
adata_extended = ad.concat([adata, new_obs], axis=0)
```
### Add variables
```python
# Create new variables
new_vars = ad.AnnData(X=np.random.rand(adata.n_obs, 100))
new_vars.obs_names = adata.obs_names
# Concatenate with existing
adata_extended = ad.concat([adata, new_vars], axis=1)
```
### Add metadata columns
```python
# Add observation annotation
adata.obs['new_score'] = np.random.rand(adata.n_obs)
# Add variable annotation
adata.var['new_label'] = ['label'] * adata.n_vars
# Add from external data
external_data = pd.read_csv('metadata.csv', index_col=0)
adata.obs['external_info'] = external_data.loc[adata.obs_names, 'column']
```
### Add layers
```python
# Add new layer
adata.layers['raw_counts'] = np.random.randint(0, 100, adata.shape)
adata.layers['log_transformed'] = np.log1p(adata.X)
# Replace layer
adata.layers['normalized'] = new_normalized_data
```
### Add embeddings
```python
# Add PCA
adata.obsm['X_pca'] = np.random.rand(adata.n_obs, 50)
# Add UMAP
adata.obsm['X_umap'] = np.random.rand(adata.n_obs, 2)
# Add multiple embeddings
adata.obsm['X_tsne'] = np.random.rand(adata.n_obs, 2)
adata.obsm['X_diffmap'] = np.random.rand(adata.n_obs, 10)
```
### Add pairwise relationships
```python
from scipy.sparse import csr_matrix
# Add nearest neighbor graph
n_obs = adata.n_obs
knn_graph = csr_matrix(np.random.rand(n_obs, n_obs) > 0.95)
adata.obsp['connectivities'] = knn_graph
# Add distance matrix
adata.obsp['distances'] = csr_matrix(np.random.rand(n_obs, n_obs))
```
### Add unstructured data
```python
# Add analysis parameters
adata.uns['pca'] = {
'variance': [0.2, 0.15, 0.1],
'variance_ratio': [0.4, 0.3, 0.2],
'params': {'n_comps': 50}
}
# Add color schemes
adata.uns['cell_type_colors'] = ['#FF0000', '#00FF00', '#0000FF']
```
## Removing Data
### Remove observations or variables
```python
# Keep only specific observations
keep_obs = adata.obs['quality_score'] > 0.5
adata = adata[keep_obs, :]
# Remove specific variables
remove_vars = adata.var['low_count']
adata = adata[:, ~remove_vars]
```
### Remove metadata columns
```python
# Remove observation column
adata.obs.drop('unwanted_column', axis=1, inplace=True)
# Remove variable column
adata.var.drop('unwanted_column', axis=1, inplace=True)
```
### Remove layers
```python
# Remove specific layer
del adata.layers['unwanted_layer']
# Remove all layers
adata.layers = {}
```
### Remove embeddings
```python
# Remove specific embedding
del adata.obsm['X_tsne']
# Remove all embeddings
adata.obsm = {}
```
### Remove unstructured data
```python
# Remove specific key
del adata.uns['unwanted_key']
# Remove all unstructured data
adata.uns = {}
```
## Reordering
### Sort observations
```python
# Sort by observation metadata
adata = adata[adata.obs.sort_values('quality_score').index, :]
# Sort by observation names
adata = adata[sorted(adata.obs_names), :]
```
### Sort variables
```python
# Sort by variable metadata
adata = adata[:, adata.var.sort_values('gene_name').index]
# Sort by variable names
adata = adata[:, sorted(adata.var_names)]
```
### Reorder to match external list
```python
# Reorder observations to match external list
desired_order = ['cell_10', 'cell_5', 'cell_20', ...]
adata = adata[desired_order, :]
# Reorder variables
desired_genes = ['TP53', 'ACTB', 'GAPDH', ...]
adata = adata[:, desired_genes]
```
## Data Transformations
### Normalize
```python
# Total count normalization (CPM/TPM-like)
total_counts = adata.X.sum(axis=1)
adata.layers['normalized'] = adata.X / total_counts[:, np.newaxis] * 1e6
# Log transformation
adata.layers['log1p'] = np.log1p(adata.X)
# Z-score normalization
mean = adata.X.mean(axis=0)
std = adata.X.std(axis=0)
adata.layers['scaled'] = (adata.X - mean) / std
```
### Filter
```python
# Filter cells by total counts
total_counts = np.array(adata.X.sum(axis=1)).flatten()
adata.obs['total_counts'] = total_counts
adata = adata[adata.obs['total_counts'] > 1000, :]
# Filter genes by detection rate
detection_rate = (adata.X > 0).sum(axis=0) / adata.n_obs
adata.var['detection_rate'] = np.array(detection_rate).flatten()
adata = adata[:, adata.var['detection_rate'] > 0.01]
```
## Working with Views
Views are lightweight references to subsets of data that don't copy the underlying matrix:
```python
# Create view
view = adata[0:100, 0:500]
print(view.is_view) # True
# Views allow read access
data = view.X
# Modifying view data affects original
# (Be careful!)
# Convert view to independent copy
independent = view.copy()
# Force AnnData to be a copy, not a view
adata = adata.copy()
```
## Merging Metadata
```python
# Merge external metadata
external_metadata = pd.read_csv('additional_metadata.csv', index_col=0)
# Join metadata (inner join on index)
adata.obs = adata.obs.join(external_metadata)
# Left join (keep all adata observations)
adata.obs = adata.obs.merge(
external_metadata,
left_index=True,
right_index=True,
how='left'
)
```
## Common Manipulation Patterns
### Quality control filtering
```python
# Calculate QC metrics
adata.obs['n_genes'] = (adata.X > 0).sum(axis=1)
adata.obs['total_counts'] = adata.X.sum(axis=1)
adata.var['n_cells'] = (adata.X > 0).sum(axis=0)
# Filter low-quality cells
adata = adata[adata.obs['n_genes'] > 200, :]
adata = adata[adata.obs['total_counts'] < 50000, :]
# Filter rarely detected genes
adata = adata[:, adata.var['n_cells'] >= 3]
```
### Select highly variable genes
```python
# Mark highly variable genes
gene_variance = np.var(adata.X, axis=0)
adata.var['variance'] = np.array(gene_variance).flatten()
adata.var['highly_variable'] = adata.var['variance'] > np.percentile(gene_variance, 90)
# Subset to highly variable genes
adata_hvg = adata[:, adata.var['highly_variable']].copy()
```
### Downsample
```python
# Random sampling of observations
np.random.seed(42)
n_sample = 500
sample_indices = np.random.choice(adata.n_obs, n_sample, replace=False)
adata_downsampled = adata[sample_indices, :].copy()
# Stratified sampling by cell type
from sklearn.model_selection import train_test_split
train_idx, test_idx = train_test_split(
range(adata.n_obs),
test_size=0.2,
stratify=adata.obs['cell_type']
)
adata_train = adata[train_idx, :].copy()
adata_test = adata[test_idx, :].copy()
```
### Split train/test
```python
# Random train/test split
np.random.seed(42)
n_obs = adata.n_obs
train_size = int(0.8 * n_obs)
indices = np.random.permutation(n_obs)
train_indices = indices[:train_size]
test_indices = indices[train_size:]
adata_train = adata[train_indices, :].copy()
adata_test = adata[test_indices, :].copy()
```

View File

@@ -1,438 +0,0 @@
# AnnData Workflows and Best Practices
## Common Workflows
### 1. Single-Cell RNA-seq Analysis Workflow
#### Loading Data
```python
import anndata as ad
import numpy as np
import pandas as pd
# Load from 10X format
adata = ad.read_mtx('matrix.mtx')
adata.var_names = pd.read_csv('genes.tsv', sep='\t', header=None)[0]
adata.obs_names = pd.read_csv('barcodes.tsv', sep='\t', header=None)[0]
# Or load from pre-processed h5ad
adata = ad.read_h5ad('preprocessed_data.h5ad')
```
#### Quality Control
```python
# Calculate QC metrics
adata.obs['n_genes'] = (adata.X > 0).sum(axis=1)
adata.obs['total_counts'] = adata.X.sum(axis=1)
# Filter cells
adata = adata[adata.obs.n_genes > 200]
adata = adata[adata.obs.total_counts < 10000]
# Filter genes
min_cells = 3
adata = adata[:, (adata.X > 0).sum(axis=0) >= min_cells]
```
#### Normalization and Preprocessing
```python
# Store raw counts
adata.layers['counts'] = adata.X.copy()
# Normalize
adata.X = adata.X / adata.obs.total_counts.values[:, None] * 1e4
# Log transform
adata.layers['log1p'] = np.log1p(adata.X)
adata.X = adata.layers['log1p']
# Identify highly variable genes
gene_variance = adata.X.var(axis=0)
adata.var['highly_variable'] = gene_variance > np.percentile(gene_variance, 90)
```
#### Dimensionality Reduction
```python
# PCA
from sklearn.decomposition import PCA
pca = PCA(n_components=50)
adata.obsm['X_pca'] = pca.fit_transform(adata.X)
# Store PCA variance
adata.uns['pca'] = {'variance_ratio': pca.explained_variance_ratio_}
# UMAP
from umap import UMAP
umap = UMAP(n_components=2)
adata.obsm['X_umap'] = umap.fit_transform(adata.obsm['X_pca'])
```
#### Clustering
```python
# Store cluster assignments
adata.obs['clusters'] = pd.Categorical(['cluster_0', 'cluster_1', ...])
# Store cluster centroids
centroids = np.array([...])
adata.varm['cluster_centroids'] = centroids
```
#### Save Results
```python
# Save complete analysis
adata.write('analyzed_data.h5ad', compression='gzip')
```
### 2. Batch Integration Workflow
```python
import anndata as ad
# Load multiple batches
batch1 = ad.read_h5ad('batch1.h5ad')
batch2 = ad.read_h5ad('batch2.h5ad')
batch3 = ad.read_h5ad('batch3.h5ad')
# Concatenate with batch labels
adata = ad.concat(
[batch1, batch2, batch3],
axis=0,
label='batch',
keys=['batch1', 'batch2', 'batch3'],
index_unique='-'
)
# Batch effect correction would go here
# (using external tools like Harmony, Scanorama, etc.)
# Store corrected embeddings
adata.obsm['X_pca_corrected'] = corrected_pca
adata.obsm['X_umap_corrected'] = corrected_umap
```
### 3. Memory-Efficient Large Dataset Workflow
```python
import anndata as ad
# Read in backed mode
adata = ad.read_h5ad('large_dataset.h5ad', backed='r')
# Check backing status
print(f"Is backed: {adata.isbacked}")
print(f"File: {adata.filename}")
# Work with chunks
for chunk in adata.chunk_X(chunk_size=1000):
# Process chunk
result = process_chunk(chunk)
# Close file when done
adata.file.close()
```
### 4. Multi-Dataset Comparison Workflow
```python
import anndata as ad
# Load datasets
datasets = {
'study1': ad.read_h5ad('study1.h5ad'),
'study2': ad.read_h5ad('study2.h5ad'),
'study3': ad.read_h5ad('study3.h5ad')
}
# Outer join to keep all genes
combined = ad.concat(
list(datasets.values()),
axis=0,
join='outer',
label='study',
keys=list(datasets.keys()),
merge='first'
)
# Handle missing data
combined.X[np.isnan(combined.X)] = 0
# Add dataset-specific metadata
combined.uns['datasets'] = {
'study1': {'date': '2023-01', 'n_samples': datasets['study1'].n_obs},
'study2': {'date': '2023-06', 'n_samples': datasets['study2'].n_obs},
'study3': {'date': '2024-01', 'n_samples': datasets['study3'].n_obs}
}
```
## Best Practices
### Memory Management
#### Use Sparse Matrices
```python
from scipy.sparse import csr_matrix
# Convert to sparse if data is sparse
if density < 0.3: # Less than 30% non-zero
adata.X = csr_matrix(adata.X)
```
#### Use Backed Mode for Large Files
```python
# Read with backing
adata = ad.read_h5ad('large_file.h5ad', backed='r')
# Only load what you need
subset = adata[:1000, :500].copy() # Now in memory
```
#### Convert Strings to Categoricals
```python
# Efficient storage for repeated strings
adata.strings_to_categoricals()
# Or manually
adata.obs['cell_type'] = pd.Categorical(adata.obs['cell_type'])
```
### Data Organization
#### Use Layers for Different Representations
```python
# Store multiple versions of the data
adata.layers['counts'] = raw_counts
adata.layers['normalized'] = normalized_data
adata.layers['log1p'] = log_transformed_data
adata.layers['scaled'] = scaled_data
```
#### Use obsm/varm for Multi-Dimensional Annotations
```python
# Embeddings
adata.obsm['X_pca'] = pca_coordinates
adata.obsm['X_umap'] = umap_coordinates
adata.obsm['X_tsne'] = tsne_coordinates
# Gene loadings
adata.varm['PCs'] = principal_components
```
#### Use uns for Analysis Metadata
```python
# Store parameters
adata.uns['preprocessing'] = {
'normalization': 'TPM',
'min_genes': 200,
'min_cells': 3,
'date': '2024-01-15'
}
# Store analysis results
adata.uns['differential_expression'] = {
'method': 't-test',
'p_value_threshold': 0.05
}
```
### Subsetting and Views
#### Understand View vs Copy
```python
# Subsetting returns a view
subset = adata[adata.obs.cell_type == 'B cell'] # View
print(subset.is_view) # True
# Views are memory efficient but modifications affect original
subset.obs['new_column'] = value # Modifies original adata
# Create independent copy when needed
subset_copy = adata[adata.obs.cell_type == 'B cell'].copy()
```
#### Chain Operations Efficiently
```python
# Bad - creates multiple intermediate views
temp1 = adata[adata.obs.batch == 'batch1']
temp2 = temp1[temp1.obs.n_genes > 200]
result = temp2[:, temp2.var.highly_variable].copy()
# Good - chain operations
result = adata[
(adata.obs.batch == 'batch1') & (adata.obs.n_genes > 200),
adata.var.highly_variable
].copy()
```
### File I/O
#### Use Compression
```python
# Save with compression
adata.write('data.h5ad', compression='gzip')
```
#### Choose the Right Format
```python
# H5AD for general use (good compression, fast)
adata.write_h5ad('data.h5ad')
# Zarr for cloud storage and parallel access
adata.write_zarr('data.zarr')
# Loom for compatibility with other tools
adata.write_loom('data.loom')
```
#### Close File Connections
```python
# Use context manager pattern
adata = ad.read_h5ad('file.h5ad', backed='r')
try:
# Work with data
process(adata)
finally:
adata.file.close()
```
### Concatenation
#### Choose Appropriate Join Strategy
```python
# Inner join - only common features (safe, may lose data)
combined = ad.concat([adata1, adata2], join='inner')
# Outer join - all features (keeps all data, may introduce zeros)
combined = ad.concat([adata1, adata2], join='outer')
```
#### Track Data Sources
```python
# Add source labels
combined = ad.concat(
[adata1, adata2, adata3],
label='dataset',
keys=['exp1', 'exp2', 'exp3']
)
# Make indices unique
combined = ad.concat(
[adata1, adata2, adata3],
index_unique='-'
)
```
#### Handle Variable-Specific Metadata
```python
# Use merge strategy for var annotations
combined = ad.concat(
[adata1, adata2],
merge='same', # Keep only identical annotations
join='outer'
)
```
### Naming Conventions
#### Use Consistent Naming
```python
# Embeddings: X_<method>
adata.obsm['X_pca']
adata.obsm['X_umap']
adata.obsm['X_tsne']
# Layers: descriptive names
adata.layers['counts']
adata.layers['log1p']
adata.layers['scaled']
# Observations: snake_case
adata.obs['cell_type']
adata.obs['n_genes']
adata.obs['total_counts']
```
#### Make Indices Unique
```python
# Ensure unique names
adata.obs_names_make_unique()
adata.var_names_make_unique()
```
### Error Handling
#### Validate Data Structure
```python
# Check dimensions
assert adata.n_obs > 0, "No observations in data"
assert adata.n_vars > 0, "No variables in data"
# Check for NaN values
if np.isnan(adata.X).any():
print("Warning: NaN values detected")
# Check for negative values in count data
if (adata.X < 0).any():
print("Warning: Negative values in count data")
```
#### Handle Missing Data
```python
# Check for missing annotations
if adata.obs['cell_type'].isna().any():
print("Warning: Missing cell type annotations")
# Fill or remove
adata = adata[~adata.obs['cell_type'].isna()]
```
## Common Pitfalls
### 1. Forgetting to Copy Views
```python
# BAD - modifies original
subset = adata[adata.obs.condition == 'treated']
subset.X = transformed_data # Changes original adata!
# GOOD
subset = adata[adata.obs.condition == 'treated'].copy()
subset.X = transformed_data # Only changes subset
```
### 2. Mixing Backed and In-Memory Operations
```python
# BAD - trying to modify backed data
adata = ad.read_h5ad('file.h5ad', backed='r')
adata.X[0, 0] = 100 # Error: can't modify backed data
# GOOD - load to memory first
adata = ad.read_h5ad('file.h5ad', backed='r')
adata = adata.to_memory()
adata.X[0, 0] = 100 # Works
```
### 3. Not Using Categoricals for Metadata
```python
# BAD - stores as strings (memory inefficient)
adata.obs['cell_type'] = ['B cell', 'T cell', ...] * 1000
# GOOD - use categorical
adata.obs['cell_type'] = pd.Categorical(['B cell', 'T cell', ...] * 1000)
```
### 4. Incorrect Concatenation Axis
```python
# Concatenating observations (cells)
combined = ad.concat([adata1, adata2], axis=0) # Correct
# Concatenating variables (genes) - rare
combined = ad.concat([adata1, adata2], axis=1) # Less common
```
### 5. Not Preserving Raw Data
```python
# BAD - loses original data
adata.X = normalized_data
# GOOD - preserve original
adata.layers['counts'] = adata.X.copy()
adata.X = normalized_data
```