mirror of
https://github.com/K-Dense-AI/claude-scientific-skills.git
synced 2026-01-26 16:58:56 +08:00
Add support for generating scientific illustrations using Nano Banan Pro and Flux.2 Pro
This commit is contained in:
@@ -154,6 +154,7 @@
|
||||
- **HypoGeniC** - Automated hypothesis generation and testing using large language models to accelerate scientific discovery. Provides three frameworks: HypoGeniC (data-driven hypothesis generation from observational data), HypoRefine (synergistic approach combining literature insights with empirical patterns through an agentic system), and Union methods (mechanistic combination of literature and data-driven hypotheses). Features iterative refinement that improves hypotheses by learning from challenging examples, Redis caching for API cost reduction, and customizable YAML-based prompt templates. Includes command-line tools for generation (hypogenic_generation) and testing (hypogenic_inference). Research applications have demonstrated 14.19% accuracy improvement in AI-content detection and 7.44% in deception detection. Use cases: deception detection in reviews, AI-generated content identification, mental stress detection, exploratory research without existing literature, hypothesis-driven analysis in novel domains, and systematic exploration of competing explanations
|
||||
|
||||
### Scientific Communication & Publishing
|
||||
- **Generate Image** - AI-powered image generation and editing for scientific illustrations, schematics, and visualizations using OpenRouter's image generation models. Supports multiple models including google/gemini-3-pro-image-preview (high quality, recommended default) and black-forest-labs/flux.2-pro (fast, high quality). Key features include: text-to-image generation from detailed prompts, image editing capabilities (modify existing images with natural language instructions), automatic base64 encoding/decoding, PNG output with configurable paths, and comprehensive error handling. Requires OpenRouter API key (via .env file or environment variable). Use cases: generating scientific diagrams and illustrations, creating publication-quality figures, editing existing images (changing colors, adding elements, removing backgrounds), producing schematics for papers and presentations, visualizing experimental setups, creating graphical abstracts, and generating conceptual illustrations for scientific communication
|
||||
- **Paper-2-Web** - Autonomous pipeline for transforming academic papers into multiple promotional formats using the Paper2All system. Converts LaTeX or PDF papers into: (1) Paper2Web - interactive, layout-aware academic homepages with responsive design, interactive figures, and mobile support; (2) Paper2Video - professional presentation videos with slides, narration, cursor movements, and optional talking-head generation using Hallo2; (3) Paper2Poster - print-ready conference posters with custom dimensions, professional layouts, and institution branding. Supports GPT-4/GPT-4.1 models, batch processing, QR code generation, multi-language content, and quality assessment metrics. Use cases: conference materials, video abstracts, preprint enhancement, research promotion, poster sessions, and academic website creation
|
||||
- **Perplexity Search** - AI-powered web search using Perplexity models via LiteLLM and OpenRouter for real-time, web-grounded answers with source citations. Provides access to multiple Perplexity models: Sonar Pro (general-purpose, best cost-quality balance), Sonar Pro Search (most advanced agentic search with multi-step reasoning), Sonar (cost-effective for simple queries), Sonar Reasoning Pro (advanced step-by-step analysis), and Sonar Reasoning (basic reasoning). Key features include: single OpenRouter API key setup (no separate Perplexity account), real-time access to current information beyond training data cutoff, comprehensive query design guidance (domain-specific patterns, time constraints, source preferences), cost optimization strategies with usage monitoring, programmatic and CLI interfaces, batch processing support, and integration with other scientific skills. Installation uses uv pip for LiteLLM, with detailed setup, troubleshooting, and security documentation. Use cases: finding recent scientific publications and research, conducting literature searches across domains, verifying facts with source citations, accessing current developments in any field, comparing technologies and approaches, performing domain-specific research (biomedical, clinical, technical), supplementing PubMed searches with real-time web results, and discovering latest developments post-database indexing
|
||||
|
||||
|
||||
Reference in New Issue
Block a user