# Scientific Packages ## Bioinformatics & Genomics - **AnnData** - Annotated data matrices for single-cell genomics and h5ad files - **Arboreto** - Gene regulatory network inference using GRNBoost2 and GENIE3 - **BioPython** - Sequence manipulation, NCBI database access, BLAST searches, alignments, and phylogenetics - **BioServices** - Programmatic access to 40+ biological web services (KEGG, UniProt, ChEBI, ChEMBL) - **Cellxgene Census** - Query and analyze large-scale single-cell RNA-seq data - **gget** - Efficient genomic database queries (Ensembl, UniProt, NCBI, PDB, COSMIC) - **pysam** - Read, write, and manipulate genomic data files (SAM/BAM/CRAM alignments, VCF/BCF variants, FASTA/FASTQ sequences) with pileup analysis, coverage calculations, and bioinformatics workflows - **PyDESeq2** - Differential gene expression analysis for bulk RNA-seq data - **Scanpy** - Single-cell RNA-seq analysis with clustering, marker genes, and UMAP/t-SNE visualization - **scvi-tools** - Probabilistic deep learning models for single-cell omics analysis. PyTorch-based framework providing variational autoencoders (VAEs) for dimensionality reduction, batch correction, differential expression, and data integration across modalities. Includes 25+ models: scVI/scANVI (RNA-seq integration and cell type annotation), totalVI (CITE-seq protein+RNA), MultiVI (multiome RNA+ATAC integration), PeakVI (ATAC-seq analysis), DestVI/Stereoscope/Tangram (spatial transcriptomics deconvolution), MethylVI (methylation), CytoVI (flow/mass cytometry), VeloVI (RNA velocity), contrastiveVI (perturbation studies), and Solo (doublet detection). Supports seamless integration with Scanpy/AnnData ecosystem, GPU acceleration, reference mapping (scArches), and probabilistic differential expression with uncertainty quantification ## Cheminformatics & Drug Discovery - **Datamol** - Molecular manipulation and featurization with enhanced RDKit workflows - **DeepChem** - Molecular machine learning, graph neural networks, and MoleculeNet benchmarks - **DiffDock** - Diffusion-based molecular docking for protein-ligand binding prediction - **MedChem** - Medicinal chemistry analysis, ADMET prediction, and drug-likeness assessment - **Molfeat** - 100+ molecular featurizers including fingerprints, descriptors, and pretrained models - **PyTDC** - Therapeutics Data Commons for drug discovery datasets and benchmarks - **RDKit** - Cheminformatics toolkit for molecular I/O, descriptors, fingerprints, and SMARTS - **TorchDrug** - PyTorch-based machine learning platform for drug discovery with 40+ datasets, 20+ GNN models for molecular property prediction, protein modeling, knowledge graph reasoning, molecular generation, and retrosynthesis planning ## Proteomics & Mass Spectrometry - **matchms** - Processing and similarity matching of mass spectrometry data with 40+ filters, spectral library matching (Cosine, Modified Cosine, Neutral Losses), metadata harmonization, molecular fingerprint comparison, and support for multiple file formats (MGF, MSP, mzML, JSON) - **pyOpenMS** - Comprehensive mass spectrometry data analysis for proteomics and metabolomics (LC-MS/MS processing, peptide identification, feature detection, quantification, chemical calculations, and integration with search engines like Comet, Mascot, MSGF+) ## Medical Imaging - **pydicom** - Pure Python package for working with DICOM (Digital Imaging and Communications in Medicine) files. Provides comprehensive support for reading, writing, and manipulating medical imaging data from CT, MRI, X-ray, ultrasound, PET scans and other modalities. Key features include: pixel data extraction and manipulation with automatic decompression (JPEG/JPEG 2000/RLE), metadata access and modification with 1000+ standardized DICOM tags, image format conversion (PNG/JPEG/TIFF), anonymization tools for removing Protected Health Information (PHI), windowing and display transformations (VOI LUT application), multi-frame and 3D volume processing, DICOM sequence handling, and support for multiple transfer syntaxes. Use cases: medical image analysis, PACS system integration, radiology workflows, research data processing, DICOM anonymization, format conversion, image preprocessing for machine learning, multi-slice volume reconstruction, and clinical imaging pipelines ## Protein Engineering & Design - **ESM (Evolutionary Scale Modeling)** - State-of-the-art protein language models from EvolutionaryScale for protein design, structure prediction, and representation learning. Includes ESM3 (1.4B-98B parameter multimodal generative models for simultaneous reasoning across sequence, structure, and function with chain-of-thought generation, inverse folding, and function-conditioned design) and ESM C (300M-6B parameter efficient embedding models 3x faster than ESM2 for similarity analysis, classification, and feature extraction). Supports local inference with open weights and cloud-based Forge API for scalable batch processing. Use cases: novel protein design, structure prediction from sequence, sequence design from structure, protein embeddings, function annotation, variant generation, and directed evolution workflows ## Machine Learning & Deep Learning - **PyMC** - Bayesian statistical modeling and probabilistic programming - **PyMOO** - Multi-objective optimization with evolutionary algorithms - **PyTorch Lightning** - Deep learning framework that organizes PyTorch code to eliminate boilerplate while maintaining full flexibility. Automates training workflows (40+ tasks including epoch/batch iteration, optimizer steps, gradient management, checkpointing), supports multi-GPU/TPU training with DDP/FSDP/DeepSpeed strategies, includes LightningModule for model organization, Trainer for automation, LightningDataModule for data pipelines, callbacks for extensibility, and integrations with TensorBoard, Wandb, MLflow for experiment tracking - **scikit-learn** - Machine learning algorithms, preprocessing, and model selection - **SHAP** - Model interpretability and explainability using Shapley values from game theory. Provides unified approach to explain any ML model with TreeExplainer (fast exact explanations for XGBoost/LightGBM/Random Forest), DeepExplainer (TensorFlow/PyTorch neural networks), KernelExplainer (model-agnostic), and LinearExplainer. Includes comprehensive visualizations (waterfall plots for individual predictions, beeswarm plots for global importance, scatter plots for feature relationships, bar/force/heatmap plots), supports model debugging, fairness analysis, feature engineering guidance, and production deployment - **statsmodels** - Statistical modeling and econometrics (OLS, GLM, logit/probit, ARIMA, time series forecasting, hypothesis testing, diagnostics) - **Torch Geometric** - Graph Neural Networks for molecular and geometric data - **Transformers** - State-of-the-art machine learning models for NLP, computer vision, audio, and multimodal tasks. Provides 1M+ pre-trained models accessible via pipelines (text-classification, NER, QA, summarization, translation, text-generation, image-classification, object-detection, ASR, VQA), comprehensive training via Trainer API with distributed training and mixed precision, flexible text generation with multiple decoding strategies (greedy, beam search, sampling), and Auto classes for automatic architecture selection (BERT, GPT, T5, ViT, BART, etc.) - **UMAP-learn** - Dimensionality reduction and manifold learning ## Materials Science & Chemistry - **Astropy** - Astronomy and astrophysics (coordinates, cosmology, FITS files) - **COBRApy** - Constraint-based metabolic modeling and flux balance analysis - **Pymatgen** - Materials structure analysis, phase diagrams, and electronic structure ## Data Analysis & Visualization - **Dask** - Parallel computing for larger-than-memory datasets with distributed DataFrames, Arrays, Bags, and Futures - **Matplotlib** - Publication-quality plotting and visualization - **Polars** - High-performance DataFrame operations with lazy evaluation - **Seaborn** - Statistical data visualization with dataset-oriented interface, automatic confidence intervals, publication-quality themes, colorblind-safe palettes, and comprehensive support for exploratory analysis, distribution comparisons, correlation matrices, regression plots, and multi-panel figures - **SimPy** - Process-based discrete-event simulation framework for modeling systems with processes, queues, and resource contention (manufacturing, service operations, network traffic, logistics). Supports generator-based process definition, multiple resource types (Resource, PriorityResource, PreemptiveResource, Container, Store), event-driven scheduling, process interaction mechanisms (signaling, interruption, parallel/sequential execution), real-time simulation synchronized with wall-clock time, and comprehensive monitoring capabilities for utilization, wait times, and queue statistics - **ReportLab** - Programmatic PDF generation for reports and documents ## Phylogenetics & Trees - **ETE Toolkit** - Phylogenetic tree manipulation, visualization, and analysis ## Genomics Tools - **deepTools** - NGS data analysis (ChIP-seq, RNA-seq, ATAC-seq) with BAM/bigWig files - **FlowIO** - Flow Cytometry Standard (FCS) file reading and manipulation - **scikit-bio** - Bioinformatics sequence analysis and diversity metrics - **Zarr** - Chunked, compressed N-dimensional array storage ## Multi-omics & AI Agent Frameworks - **BIOMNI** - Autonomous biomedical AI agent framework from Stanford SNAP lab for executing complex research tasks across genomics, drug discovery, molecular biology, and clinical analysis. Combines LLM reasoning with code execution and ~11GB of integrated biomedical databases (Ensembl, NCBI Gene, UniProt, PDB, AlphaFold, ClinVar, OMIM, HPO, PubMed, KEGG, Reactome, GO). Supports multiple LLM providers (Claude, GPT-4, Gemini, Groq, Bedrock). Includes A1 agent class for autonomous task decomposition, BiomniEval1 benchmark framework, and MCP server integration. Use cases: CRISPR screening design, single-cell RNA-seq analysis, ADMET prediction, GWAS interpretation, rare disease diagnosis, protein structure analysis, literature synthesis, and multi-omics integration ## Scientific Communication & Publishing - **Paper-2-Web** - Autonomous pipeline for transforming academic papers into multiple promotional formats using the Paper2All system. Converts LaTeX or PDF papers into: (1) Paper2Web - interactive, layout-aware academic homepages with responsive design, interactive figures, and mobile support; (2) Paper2Video - professional presentation videos with slides, narration, cursor movements, and optional talking-head generation using Hallo2; (3) Paper2Poster - print-ready conference posters with custom dimensions, professional layouts, and institution branding. Supports GPT-4/GPT-4.1 models, batch processing, QR code generation, multi-language content, and quality assessment metrics. Use cases: conference materials, video abstracts, preprint enhancement, research promotion, poster sessions, and academic website creation ## Tool Discovery & Research Platforms - **ToolUniverse** - Unified ecosystem providing standardized access to 600+ scientific tools, models, datasets, and APIs across bioinformatics, cheminformatics, genomics, structural biology, and proteomics. Enables AI agents to function as research scientists through: (1) Tool Discovery - natural language, semantic, and keyword-based search for finding relevant scientific tools (Tool_Finder, Tool_Finder_LLM, Tool_Finder_Keyword); (2) Tool Execution - standardized AI-Tool Interaction Protocol for running tools with consistent interfaces; (3) Tool Composition - sequential and parallel workflow chaining for multi-step research pipelines; (4) Model Context Protocol (MCP) integration for Claude Desktop/Code. Supports drug discovery workflows (disease→targets→structures→screening→candidates), genomics analysis (expression→differential analysis→pathways), clinical genomics (variants→annotation→pathogenicity→disease associations), and cross-domain research. Use cases: accessing scientific databases (OpenTargets, PubChem, UniProt, PDB, ChEMBL, KEGG), protein structure prediction (AlphaFold), molecular docking, pathway enrichment, variant annotation, literature searches, and automated scientific workflows