Files
Robert 312f18ae60 Add neuropixels-analysis skill for extracellular electrophysiology
Adds comprehensive toolkit for analyzing Neuropixels high-density neural
recordings using SpikeInterface, Allen Institute, and IBL best practices.

Features:
- Data loading from SpikeGLX, Open Ephys, and NWB formats
- Preprocessing pipelines (filtering, phase shift, CAR, bad channel detection)
- Motion/drift estimation and correction
- Spike sorting integration (Kilosort4, SpykingCircus2, Mountainsort5)
- Quality metrics computation (SNR, ISI violations, presence ratio)
- Automated curation using Allen/IBL criteria
- AI-assisted visual curation for uncertain units
- Export to Phy and NWB formats

Supports Neuropixels 1.0 and 2.0 probes.

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2025-12-17 11:06:28 -05:00

99 lines
2.5 KiB
Python

#!/usr/bin/env python
"""
Run spike sorting on preprocessed recording.
Usage:
python run_sorting.py preprocessed/ --sorter kilosort4 --output sorting/
"""
import argparse
from pathlib import Path
import spikeinterface.full as si
# Default parameters for each sorter
SORTER_DEFAULTS = {
'kilosort4': {
'batch_size': 30000,
'nblocks': 1,
'Th_learned': 8,
'Th_universal': 9,
},
'kilosort3': {
'do_CAR': False, # Already done in preprocessing
},
'spykingcircus2': {
'apply_preprocessing': False,
},
'mountainsort5': {
'filter': False,
'whiten': False,
},
}
def run_sorting(
input_path: str,
output_dir: str,
sorter: str = 'kilosort4',
sorter_params: dict = None,
n_jobs: int = -1,
):
"""Run spike sorting."""
print(f"Loading preprocessed recording from: {input_path}")
recording = si.load_extractor(Path(input_path) / 'preprocessed')
print(f"Recording: {recording.get_num_channels()} channels, {recording.get_total_duration():.1f}s")
# Get sorter parameters
params = SORTER_DEFAULTS.get(sorter, {}).copy()
if sorter_params:
params.update(sorter_params)
print(f"Running {sorter} with params: {params}")
output_path = Path(output_dir)
# Run sorter (note: parameter is 'folder' not 'output_folder' in newer SpikeInterface)
sorting = si.run_sorter(
sorter,
recording,
folder=output_path / f'{sorter}_output',
verbose=True,
**params,
)
print(f"\nSorting complete!")
print(f" Units found: {len(sorting.unit_ids)}")
print(f" Total spikes: {sum(len(sorting.get_unit_spike_train(uid)) for uid in sorting.unit_ids)}")
# Save sorting
sorting.save(folder=output_path / 'sorting')
print(f" Saved to: {output_path / 'sorting'}")
return sorting
def main():
parser = argparse.ArgumentParser(description='Run spike sorting')
parser.add_argument('input', help='Path to preprocessed recording')
parser.add_argument('--output', '-o', default='sorting/', help='Output directory')
parser.add_argument('--sorter', '-s', default='kilosort4',
choices=['kilosort4', 'kilosort3', 'spykingcircus2', 'mountainsort5'])
parser.add_argument('--n-jobs', type=int, default=-1, help='Number of parallel jobs')
args = parser.parse_args()
run_sorting(
args.input,
args.output,
sorter=args.sorter,
n_jobs=args.n_jobs,
)
if __name__ == '__main__':
main()