mirror of
https://github.com/K-Dense-AI/claude-scientific-skills.git
synced 2026-01-26 16:58:56 +08:00
8.4 KiB
8.4 KiB
Training with Transformers
Transformers provides comprehensive training capabilities through the Trainer API, supporting distributed training, mixed precision, and advanced optimization techniques.
Basic Training Workflow
from transformers import (
AutoModelForSequenceClassification,
AutoTokenizer,
Trainer,
TrainingArguments
)
from datasets import load_dataset
# 1. Load and preprocess data
dataset = load_dataset("imdb")
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
def tokenize_function(examples):
return tokenizer(examples["text"], padding="max_length", truncation=True)
tokenized_datasets = dataset.map(tokenize_function, batched=True)
# 2. Load model
model = AutoModelForSequenceClassification.from_pretrained(
"bert-base-uncased",
num_labels=2
)
# 3. Define training arguments
training_args = TrainingArguments(
output_dir="./results",
num_train_epochs=3,
per_device_train_batch_size=16,
per_device_eval_batch_size=64,
learning_rate=2e-5,
eval_strategy="epoch",
save_strategy="epoch",
load_best_model_at_end=True,
)
# 4. Create trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["test"],
)
# 5. Train
trainer.train()
# 6. Evaluate
trainer.evaluate()
# 7. Save model
trainer.save_model("./final_model")
TrainingArguments Configuration
Essential Parameters
Output and Logging:
output_dir: Directory for checkpoints and outputs (required)logging_dir: TensorBoard log directory (default:{output_dir}/runs)logging_steps: Log every N steps (default: 500)logging_strategy: "steps" or "epoch"
Training Duration:
num_train_epochs: Number of epochs (default: 3.0)max_steps: Max training steps (overrides num_train_epochs if set)
Batch Size and Gradient Accumulation:
per_device_train_batch_size: Batch size per device (default: 8)per_device_eval_batch_size: Eval batch size per device (default: 8)gradient_accumulation_steps: Accumulate gradients over N steps (default: 1)- Effective batch size =
per_device_train_batch_size * gradient_accumulation_steps * num_gpus
Learning Rate:
learning_rate: Peak learning rate (default: 5e-5)lr_scheduler_type: Scheduler type ("linear", "cosine", "constant", etc.)warmup_steps: Warmup steps (default: 0)warmup_ratio: Warmup as fraction of total steps
Evaluation:
eval_strategy: "no", "steps", or "epoch" (default: "no")eval_steps: Evaluate every N steps (if eval_strategy="steps")eval_delay: Delay evaluation until N steps
Checkpointing:
save_strategy: "no", "steps", or "epoch" (default: "steps")save_steps: Save checkpoint every N steps (default: 500)save_total_limit: Keep only N most recent checkpointsload_best_model_at_end: Load best checkpoint at end (default: False)metric_for_best_model: Metric to determine best model
Optimization:
optim: Optimizer ("adamw_torch", "adamw_hf", "sgd", etc.)weight_decay: Weight decay coefficient (default: 0.0)adam_beta1,adam_beta2: Adam optimizer betasadam_epsilon: Epsilon for Adam (default: 1e-8)max_grad_norm: Max gradient norm for clipping (default: 1.0)
Mixed Precision Training
training_args = TrainingArguments(
output_dir="./results",
fp16=True, # Use fp16 on NVIDIA GPUs
fp16_opt_level="O1", # O0, O1, O2, O3 (Apex levels)
# or
bf16=True, # Use bf16 on Ampere+ GPUs (better than fp16)
)
Distributed Training
DataParallel (single-node multi-GPU):
# Automatic with multiple GPUs
training_args = TrainingArguments(
output_dir="./results",
per_device_train_batch_size=16, # Per GPU
)
# Run: python script.py
DistributedDataParallel (multi-node or multi-GPU):
# Single node, multiple GPUs
python -m torch.distributed.launch --nproc_per_node=4 script.py
# Or use accelerate
accelerate config
accelerate launch script.py
DeepSpeed Integration:
training_args = TrainingArguments(
output_dir="./results",
deepspeed="ds_config.json", # DeepSpeed config file
)
Advanced Features
Gradient Checkpointing (reduce memory):
training_args = TrainingArguments(
output_dir="./results",
gradient_checkpointing=True,
)
Compilation with torch.compile:
training_args = TrainingArguments(
output_dir="./results",
torch_compile=True,
torch_compile_backend="inductor", # or "cudagraphs"
)
Push to Hub:
training_args = TrainingArguments(
output_dir="./results",
push_to_hub=True,
hub_model_id="username/model-name",
hub_strategy="every_save", # or "end"
)
Custom Training Components
Custom Metrics
import evaluate
import numpy as np
metric = evaluate.load("accuracy")
def compute_metrics(eval_pred):
logits, labels = eval_pred
predictions = np.argmax(logits, axis=-1)
return metric.compute(predictions=predictions, references=labels)
trainer = Trainer(
model=model,
args=training_args,
compute_metrics=compute_metrics,
)
Custom Loss Function
class CustomTrainer(Trainer):
def compute_loss(self, model, inputs, return_outputs=False):
labels = inputs.pop("labels")
outputs = model(**inputs)
logits = outputs.logits
# Custom loss calculation
loss_fct = torch.nn.CrossEntropyLoss(weight=class_weights)
loss = loss_fct(logits.view(-1, self.model.config.num_labels), labels.view(-1))
return (loss, outputs) if return_outputs else loss
Data Collator
from transformers import DataCollatorWithPadding
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
data_collator=data_collator,
)
Callbacks
from transformers import TrainerCallback
class CustomCallback(TrainerCallback):
def on_epoch_end(self, args, state, control, **kwargs):
print(f"Epoch {state.epoch} completed!")
return control
trainer = Trainer(
model=model,
args=training_args,
callbacks=[CustomCallback],
)
Hyperparameter Search
def model_init():
return AutoModelForSequenceClassification.from_pretrained(
"bert-base-uncased",
num_labels=2
)
trainer = Trainer(
model_init=model_init,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
compute_metrics=compute_metrics,
)
# Optuna-based search
best_trial = trainer.hyperparameter_search(
direction="maximize",
backend="optuna",
n_trials=10,
hp_space=lambda trial: {
"learning_rate": trial.suggest_float("learning_rate", 1e-5, 5e-5, log=True),
"per_device_train_batch_size": trial.suggest_categorical("per_device_train_batch_size", [8, 16, 32]),
"num_train_epochs": trial.suggest_int("num_train_epochs", 2, 5),
}
)
Training Best Practices
- Start with small learning rates: 2e-5 to 5e-5 for fine-tuning
- Use warmup: 5-10% of total steps for learning rate warmup
- Monitor training: Use eval_strategy="epoch" or "steps" to track progress
- Save checkpoints: Set save_strategy and save_total_limit
- Use mixed precision: Enable fp16 or bf16 for faster training
- Gradient accumulation: For large effective batch sizes on limited memory
- Load best model: Set load_best_model_at_end=True to avoid overfitting
- Push to Hub: Enable push_to_hub for easy model sharing and versioning
Common Training Patterns
Classification
model = AutoModelForSequenceClassification.from_pretrained(
"bert-base-uncased",
num_labels=num_classes,
id2label=id2label,
label2id=label2id
)
Question Answering
model = AutoModelForQuestionAnswering.from_pretrained("bert-base-uncased")
Token Classification (NER)
model = AutoModelForTokenClassification.from_pretrained(
"bert-base-uncased",
num_labels=num_tags,
id2label=id2label,
label2id=label2id
)
Sequence-to-Sequence
model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")
Causal Language Modeling
model = AutoModelForCausalLM.from_pretrained("gpt2")
Masked Language Modeling
model = AutoModelForMaskedLM.from_pretrained("bert-base-uncased")