Files
claude-scientific-skills/scientific-packages/transformers/scripts/fine_tune_classifier.py
2025-10-21 10:30:38 -07:00

242 lines
6.5 KiB
Python

#!/usr/bin/env python3
"""
Fine-tune a transformer model for text classification.
This script demonstrates the complete workflow for fine-tuning a pre-trained
model on a classification task using the Trainer API.
"""
import numpy as np
from datasets import load_dataset
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
TrainingArguments,
Trainer,
DataCollatorWithPadding,
)
import evaluate
def load_and_prepare_data(dataset_name="imdb", model_name="distilbert-base-uncased", max_samples=None):
"""
Load dataset and tokenize.
Args:
dataset_name: Name of the dataset to load
model_name: Name of the model/tokenizer to use
max_samples: Limit number of samples (for quick testing)
Returns:
tokenized_datasets, tokenizer
"""
print(f"Loading dataset: {dataset_name}")
dataset = load_dataset(dataset_name)
# Optionally limit samples for quick testing
if max_samples:
dataset["train"] = dataset["train"].select(range(max_samples))
dataset["test"] = dataset["test"].select(range(min(max_samples, len(dataset["test"]))))
print(f"Loading tokenizer: {model_name}")
tokenizer = AutoTokenizer.from_pretrained(model_name)
def tokenize_function(examples):
return tokenizer(
examples["text"],
padding="max_length",
truncation=True,
max_length=512
)
print("Tokenizing dataset...")
tokenized_datasets = dataset.map(tokenize_function, batched=True)
return tokenized_datasets, tokenizer
def create_model(model_name, num_labels, id2label, label2id):
"""
Create classification model.
Args:
model_name: Name of the pre-trained model
num_labels: Number of classification labels
id2label: Dictionary mapping label IDs to names
label2id: Dictionary mapping label names to IDs
Returns:
model
"""
print(f"Loading model: {model_name}")
model = AutoModelForSequenceClassification.from_pretrained(
model_name,
num_labels=num_labels,
id2label=id2label,
label2id=label2id
)
return model
def define_compute_metrics(metric_name="accuracy"):
"""
Define function to compute metrics during evaluation.
Args:
metric_name: Name of the metric to use
Returns:
compute_metrics function
"""
metric = evaluate.load(metric_name)
def compute_metrics(eval_pred):
logits, labels = eval_pred
predictions = np.argmax(logits, axis=-1)
return metric.compute(predictions=predictions, references=labels)
return compute_metrics
def train_model(model, tokenizer, train_dataset, eval_dataset, output_dir="./results"):
"""
Train the model.
Args:
model: The model to train
tokenizer: The tokenizer
train_dataset: Training dataset
eval_dataset: Evaluation dataset
output_dir: Directory for checkpoints and logs
Returns:
trained model, trainer
"""
# Define training arguments
training_args = TrainingArguments(
output_dir=output_dir,
num_train_epochs=3,
per_device_train_batch_size=16,
per_device_eval_batch_size=64,
learning_rate=2e-5,
weight_decay=0.01,
eval_strategy="epoch",
save_strategy="epoch",
load_best_model_at_end=True,
metric_for_best_model="accuracy",
logging_dir=f"{output_dir}/logs",
logging_steps=100,
save_total_limit=2,
fp16=False, # Set to True if using GPU with fp16 support
)
# Create data collator
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
# Create trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
data_collator=data_collator,
compute_metrics=define_compute_metrics("accuracy"),
)
# Train
print("\nStarting training...")
trainer.train()
# Evaluate
print("\nEvaluating model...")
eval_results = trainer.evaluate()
print(f"Evaluation results: {eval_results}")
return model, trainer
def test_inference(model, tokenizer, id2label):
"""
Test the trained model with sample texts.
Args:
model: Trained model
tokenizer: Tokenizer
id2label: Dictionary mapping label IDs to names
"""
print("\n=== Testing Inference ===")
test_texts = [
"This movie was absolutely fantastic! I loved every minute of it.",
"Terrible film. Waste of time and money.",
"It was okay, nothing special but not bad either."
]
for text in test_texts:
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
outputs = model(**inputs)
predictions = outputs.logits.argmax(-1)
predicted_label = id2label[predictions.item()]
confidence = outputs.logits.softmax(-1).max().item()
print(f"\nText: {text}")
print(f"Prediction: {predicted_label} (confidence: {confidence:.3f})")
def main():
"""Main training pipeline."""
# Configuration
DATASET_NAME = "imdb"
MODEL_NAME = "distilbert-base-uncased"
OUTPUT_DIR = "./results"
MAX_SAMPLES = None # Set to a small number (e.g., 1000) for quick testing
# Label mapping
id2label = {0: "negative", 1: "positive"}
label2id = {"negative": 0, "positive": 1}
num_labels = len(id2label)
print("=" * 60)
print("Fine-Tuning Text Classification Model")
print("=" * 60)
# Load and prepare data
tokenized_datasets, tokenizer = load_and_prepare_data(
dataset_name=DATASET_NAME,
model_name=MODEL_NAME,
max_samples=MAX_SAMPLES
)
# Create model
model = create_model(
model_name=MODEL_NAME,
num_labels=num_labels,
id2label=id2label,
label2id=label2id
)
# Train model
model, trainer = train_model(
model=model,
tokenizer=tokenizer,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["test"],
output_dir=OUTPUT_DIR
)
# Save final model
print(f"\nSaving model to {OUTPUT_DIR}/final_model")
trainer.save_model(f"{OUTPUT_DIR}/final_model")
tokenizer.save_pretrained(f"{OUTPUT_DIR}/final_model")
# Test inference
test_inference(model, tokenizer, id2label)
print("\n" + "=" * 60)
print("Training completed successfully!")
print("=" * 60)
if __name__ == "__main__":
main()