13 KiB
Model Quantization Guide
Comprehensive guide to reducing model memory footprint through quantization while maintaining accuracy.
Overview
Quantization reduces memory requirements by storing model weights in lower precision formats (int8, int4) instead of full precision (float32). This enables:
- Running larger models on limited hardware
- Faster inference (reduced memory bandwidth)
- Lower deployment costs
- Enabling fine-tuning of models that wouldn't fit in memory
Tradeoffs:
- Slight accuracy loss (typically < 1-2%)
- Initial quantization overhead
- Some methods require calibration data
Quick Comparison
| Method | Precision | Speed | Accuracy | Fine-tuning | Hardware | Setup |
|---|---|---|---|---|---|---|
| Bitsandbytes | 4/8-bit | Fast | High | Yes (PEFT) | CUDA, CPU | Easy |
| GPTQ | 2-8-bit | Very Fast | High | Limited | CUDA, ROCm, Metal | Medium |
| AWQ | 4-bit | Very Fast | High | Yes (PEFT) | CUDA, ROCm | Medium |
| GGUF | 1-8-bit | Medium | Variable | No | CPU-optimized | Easy |
| HQQ | 1-8-bit | Fast | High | Yes | Multi-platform | Medium |
Bitsandbytes (BnB)
On-the-fly quantization with excellent PEFT fine-tuning support.
8-bit Quantization
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-2-7b-hf",
load_in_8bit=True, # Enable 8-bit quantization
device_map="auto", # Automatic device placement
)
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
# Use normally
inputs = tokenizer("Hello, how are you?", return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=50)
Memory Savings:
- 7B model: ~14GB → ~7GB (50% reduction)
- 13B model: ~26GB → ~13GB
- 70B model: ~140GB → ~70GB
Characteristics:
- Fast inference
- Minimal accuracy loss
- Works with PEFT (LoRA, QLoRA)
- Supports CPU and CUDA GPUs
4-bit Quantization (QLoRA)
from transformers import AutoModelForCausalLM, BitsAndBytesConfig
import torch
# Configure 4-bit quantization
bnb_config = BitsAndBytesConfig(
load_in_4bit=True, # Enable 4-bit quantization
bnb_4bit_quant_type="nf4", # Quantization type ("nf4" or "fp4")
bnb_4bit_compute_dtype=torch.float16, # Computation dtype
bnb_4bit_use_double_quant=True, # Nested quantization for more savings
)
model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-2-7b-hf",
quantization_config=bnb_config,
device_map="auto",
)
Memory Savings:
- 7B model: ~14GB → ~4GB (70% reduction)
- 13B model: ~26GB → ~7GB
- 70B model: ~140GB → ~35GB
Quantization Types:
nf4: Normal Float 4 (recommended, better quality)fp4: Float Point 4 (slightly more memory efficient)
Compute Dtype:
# For better quality
bnb_4bit_compute_dtype=torch.float16
# For best performance on Ampere+ GPUs
bnb_4bit_compute_dtype=torch.bfloat16
Double Quantization:
# Enable for additional ~0.4 bits/param savings
bnb_4bit_use_double_quant=True # Quantize the quantization constants
Fine-tuning with QLoRA
from transformers import AutoModelForCausalLM, BitsAndBytesConfig, TrainingArguments, Trainer
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
import torch
# Load quantized model
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
)
model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-2-7b-hf",
quantization_config=bnb_config,
device_map="auto",
)
# Prepare for training
model = prepare_model_for_kbit_training(model)
# Configure LoRA
lora_config = LoraConfig(
r=16,
lora_alpha=32,
target_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM"
)
model = get_peft_model(model, lora_config)
# Train normally
trainer = Trainer(model=model, args=training_args, ...)
trainer.train()
GPTQ
Post-training quantization requiring calibration, optimized for inference speed.
Loading GPTQ Models
from transformers import AutoModelForCausalLM, AutoTokenizer, GPTQConfig
# Load pre-quantized GPTQ model
model = AutoModelForCausalLM.from_pretrained(
"TheBloke/Llama-2-7B-GPTQ", # Pre-quantized model
device_map="auto",
revision="gptq-4bit-32g-actorder_True", # Specific quantization config
)
# Or quantize yourself
gptq_config = GPTQConfig(
bits=4, # 2, 3, 4, 8 bits
dataset="c4", # Calibration dataset
tokenizer=tokenizer,
)
model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-2-7b-hf",
device_map="auto",
quantization_config=gptq_config,
)
# Save quantized model
model.save_pretrained("llama-2-7b-gptq")
Configuration Options:
gptq_config = GPTQConfig(
bits=4, # Quantization bits
group_size=128, # Group size for quantization (128, 32, -1)
dataset="c4", # Calibration dataset
desc_act=False, # Activation order (can improve accuracy)
sym=True, # Symmetric quantization
damp_percent=0.1, # Dampening factor
)
Characteristics:
- Fastest inference among quantization methods
- Requires one-time calibration (slow)
- Best when using pre-quantized models from Hub
- Limited fine-tuning support
- Excellent for production deployment
AWQ (Activation-aware Weight Quantization)
Protects important weights for better quality.
Loading AWQ Models
from transformers import AutoModelForCausalLM, AwqConfig
# Load pre-quantized AWQ model
model = AutoModelForCausalLM.from_pretrained(
"TheBloke/Llama-2-7B-AWQ",
device_map="auto",
)
# Or quantize yourself
awq_config = AwqConfig(
bits=4, # 4-bit quantization
group_size=128, # Quantization group size
zero_point=True, # Use zero-point quantization
version="GEMM", # Quantization version
)
model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-2-7b-hf",
quantization_config=awq_config,
device_map="auto",
)
Characteristics:
- Better accuracy than GPTQ at same bit width
- Excellent inference speed
- Supports PEFT fine-tuning
- Requires calibration data
Fine-tuning AWQ Models
from peft import LoraConfig, get_peft_model
# AWQ models support LoRA fine-tuning
lora_config = LoraConfig(
r=16,
lora_alpha=32,
target_modules=["q_proj", "v_proj"],
lora_dropout=0.05,
task_type="CAUSAL_LM"
)
model = get_peft_model(model, lora_config)
trainer = Trainer(model=model, ...)
trainer.train()
GGUF (GGML Format)
CPU-optimized quantization format, popular in llama.cpp ecosystem.
Using GGUF Models
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load GGUF model
model = AutoModelForCausalLM.from_pretrained(
"TheBloke/Llama-2-7B-GGUF",
gguf_file="llama-2-7b.Q4_K_M.gguf", # Specific quantization file
device_map="auto",
)
tokenizer = AutoTokenizer.from_pretrained("TheBloke/Llama-2-7B-GGUF")
GGUF Quantization Types:
Q4_0: 4-bit, smallest, lowest qualityQ4_K_M: 4-bit, medium quality (recommended)Q5_K_M: 5-bit, good qualityQ6_K: 6-bit, high qualityQ8_0: 8-bit, very high quality
Characteristics:
- Optimized for CPU inference
- Wide range of bit depths (1-8)
- Good for Apple Silicon (M1/M2)
- No fine-tuning support
- Excellent for local/edge deployment
HQQ (Half-Quadratic Quantization)
Flexible quantization with good accuracy retention.
Using HQQ
from transformers import AutoModelForCausalLM, HqqConfig
hqq_config = HqqConfig(
nbits=4, # Quantization bits
group_size=64, # Group size
quant_zero=False, # Quantize zero point
quant_scale=False, # Quantize scale
axis=0, # Quantization axis
)
model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-2-7b-hf",
quantization_config=hqq_config,
device_map="auto",
)
Characteristics:
- Very fast quantization
- No calibration data needed
- Support for 1-8 bits
- Can serialize/deserialize
- Good accuracy vs size tradeoff
Choosing a Quantization Method
Decision Tree
For inference only:
- Need fastest inference? → GPTQ or AWQ (use pre-quantized models)
- CPU-only deployment? → GGUF
- Want easiest setup? → Bitsandbytes 8-bit
- Need extreme compression? → GGUF Q4_0 or HQQ 2-bit
For fine-tuning:
- Limited VRAM? → QLoRA (BnB 4-bit + LoRA)
- Want best accuracy? → Bitsandbytes 8-bit + LoRA
- Need very large models? → QLoRA with double quantization
For production:
- Latency-critical? → GPTQ or AWQ
- Cost-optimized? → Bitsandbytes 8-bit
- CPU deployment? → GGUF
Memory Requirements
Approximate memory for Llama-2 7B model:
| Method | Memory | vs FP16 |
|---|---|---|
| FP32 | 28GB | 2x |
| FP16 / BF16 | 14GB | 1x |
| 8-bit (BnB) | 7GB | 0.5x |
| 4-bit (QLoRA) | 3.5GB | 0.25x |
| 4-bit Double Quant | 3GB | 0.21x |
| GPTQ 4-bit | 4GB | 0.29x |
| AWQ 4-bit | 4GB | 0.29x |
Note: Add ~1-2GB for inference activations, KV cache, and framework overhead.
Best Practices
For Training
# QLoRA recommended configuration
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16, # BF16 if available
bnb_4bit_use_double_quant=True,
)
# LoRA configuration
lora_config = LoraConfig(
r=16, # Rank (8, 16, 32, 64)
lora_alpha=32, # Scaling (typically 2*r)
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM"
)
For Inference
# High-speed inference
model = AutoModelForCausalLM.from_pretrained(
"TheBloke/Llama-2-7B-GPTQ",
device_map="auto",
torch_dtype=torch.float16, # Use FP16 for activations
)
# Balanced quality/speed
model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-2-7b-hf",
load_in_8bit=True,
device_map="auto",
)
# Maximum compression
model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-2-7b-hf",
quantization_config=BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
),
device_map="auto",
)
Multi-GPU Setups
# Automatically distribute across GPUs
model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-2-70b-hf",
load_in_4bit=True,
device_map="auto", # Automatic distribution
max_memory={0: "20GB", 1: "20GB"}, # Optional: limit per GPU
)
# Manual device map
device_map = {
"model.embed_tokens": 0,
"model.layers.0": 0,
"model.layers.1": 0,
# ... distribute layers ...
"model.norm": 1,
"lm_head": 1,
}
model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-2-70b-hf",
load_in_4bit=True,
device_map=device_map,
)
Troubleshooting
Issue: OOM during quantization
# Solution: Use low_cpu_mem_usage
model = AutoModelForCausalLM.from_pretrained(
"model-name",
quantization_config=config,
device_map="auto",
low_cpu_mem_usage=True, # Reduce CPU memory during loading
)
Issue: Slow quantization
# GPTQ/AWQ take time to calibrate
# Solution: Use pre-quantized models from Hub
model = AutoModelForCausalLM.from_pretrained("TheBloke/Model-GPTQ")
# Or use BnB for instant quantization
model = AutoModelForCausalLM.from_pretrained("model-name", load_in_4bit=True)
Issue: Poor quality after quantization
# Try different quantization types
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4", # Try "nf4" instead of "fp4"
bnb_4bit_compute_dtype=torch.bfloat16, # Use BF16 if available
)
# Or use 8-bit instead of 4-bit
model = AutoModelForCausalLM.from_pretrained("model-name", load_in_8bit=True)
Issue: Can't fine-tune quantized model
# Ensure using compatible quantization method
from peft import prepare_model_for_kbit_training
model = prepare_model_for_kbit_training(model)
# Only BnB and AWQ support PEFT fine-tuning
# GPTQ has limited support, GGUF doesn't support fine-tuning
Performance Benchmarks
Approximate generation speed (tokens/sec) for Llama-2 7B on A100 40GB:
| Method | Speed | Memory |
|---|---|---|
| FP16 | 100 tok/s | 14GB |
| 8-bit | 90 tok/s | 7GB |
| 4-bit QLoRA | 70 tok/s | 4GB |
| GPTQ 4-bit | 95 tok/s | 4GB |
| AWQ 4-bit | 95 tok/s | 4GB |
Note: Actual performance varies by hardware, sequence length, and batch size.
Resources
- Pre-quantized models: Search "GPTQ" or "AWQ" on Hugging Face Hub
- BnB documentation: https://github.com/TimDettmers/bitsandbytes
- PEFT library: https://github.com/huggingface/peft
- QLoRA paper: https://arxiv.org/abs/2305.14314
For task-specific quantization examples, see training_guide.md.