Files
claude-scientific-skills/scientific-skills/research-lookup/scripts/research_lookup.py
Vinayak Agarwal 3439a21f57 Enhance citation management and literature review guidelines
- Updated SKILL.md in citation management to include best practices for identifying seminal and high-impact papers, emphasizing citation count thresholds, venue quality tiers, and author reputation indicators.
- Expanded literature review SKILL.md to prioritize high-impact papers, detailing citation metrics, journal tiers, and author reputation assessment.
- Added comprehensive evaluation strategies for paper impact and quality in literature_search_strategies.md, including citation count significance and journal impact factor guidance.
- Improved research lookup scripts to prioritize results based on citation count, venue prestige, and author reputation, enhancing the quality of research outputs.
2026-01-05 13:01:10 -08:00

475 lines
20 KiB
Python
Executable File

#!/usr/bin/env python3
"""
Research Information Lookup Tool
Uses Perplexity's Sonar Pro Search model through OpenRouter for academic research queries.
"""
import os
import json
import requests
import time
from datetime import datetime
from typing import Dict, List, Optional, Any
from urllib.parse import quote
class ResearchLookup:
"""Research information lookup using Perplexity Sonar models via OpenRouter."""
# Available models
MODELS = {
"pro": "perplexity/sonar-pro", # Fast lookup, cost-effective
"reasoning": "perplexity/sonar-reasoning-pro", # Deep analysis with reasoning
}
# Keywords that indicate complex queries requiring reasoning model
REASONING_KEYWORDS = [
"compare", "contrast", "analyze", "analysis", "evaluate", "critique",
"versus", "vs", "vs.", "compared to", "differences between", "similarities",
"meta-analysis", "systematic review", "synthesis", "integrate",
"mechanism", "why", "how does", "how do", "explain", "relationship",
"theoretical framework", "implications", "interpret", "reasoning",
"controversy", "conflicting", "paradox", "debate", "reconcile",
"pros and cons", "advantages and disadvantages", "trade-off", "tradeoff",
]
def __init__(self, force_model: Optional[str] = None):
"""
Initialize the research lookup tool.
Args:
force_model: Optional model override ('pro' or 'reasoning').
If None, model is auto-selected based on query complexity.
"""
self.api_key = os.getenv("OPENROUTER_API_KEY")
if not self.api_key:
raise ValueError("OPENROUTER_API_KEY environment variable not set")
self.base_url = "https://openrouter.ai/api/v1"
self.force_model = force_model
self.headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json",
"HTTP-Referer": "https://scientific-writer.local",
"X-Title": "Scientific Writer Research Tool"
}
def _select_model(self, query: str) -> str:
"""
Select the appropriate model based on query complexity.
Args:
query: The research query
Returns:
Model identifier string
"""
if self.force_model:
return self.MODELS.get(self.force_model, self.MODELS["reasoning"])
# Check for reasoning keywords (case-insensitive)
query_lower = query.lower()
for keyword in self.REASONING_KEYWORDS:
if keyword in query_lower:
return self.MODELS["reasoning"]
# Check for multiple questions or complex structure
question_count = query.count("?")
if question_count >= 2:
return self.MODELS["reasoning"]
# Check for very long queries (likely complex)
if len(query) > 200:
return self.MODELS["reasoning"]
# Default to pro for simple lookups
return self.MODELS["pro"]
def _make_request(self, messages: List[Dict[str, str]], model: str, **kwargs) -> Dict[str, Any]:
"""Make a request to the OpenRouter API with academic search mode."""
data = {
"model": model,
"messages": messages,
"max_tokens": 8000,
"temperature": 0.1, # Low temperature for factual research
# Perplexity-specific parameters for academic search
"search_mode": "academic", # Prioritize scholarly sources (peer-reviewed papers, journals)
"search_context_size": "high", # Always use high context for deeper research
**kwargs
}
try:
response = requests.post(
f"{self.base_url}/chat/completions",
headers=self.headers,
json=data,
timeout=90 # Increased timeout for academic search
)
response.raise_for_status()
return response.json()
except requests.exceptions.RequestException as e:
raise Exception(f"API request failed: {str(e)}")
def _format_research_prompt(self, query: str) -> str:
"""Format the query for optimal research results."""
return f"""You are an expert research assistant. Please provide comprehensive, accurate research information for the following query: "{query}"
IMPORTANT INSTRUCTIONS:
1. Focus on ACADEMIC and SCIENTIFIC sources (peer-reviewed papers, reputable journals, institutional research)
2. Include RECENT information (prioritize 2020-2026 publications)
3. Provide COMPLETE citations with authors, title, journal/conference, year, and DOI when available
4. Structure your response with clear sections and proper attribution
5. Be comprehensive but concise - aim for 800-1200 words
6. Include key findings, methodologies, and implications when relevant
7. Note any controversies, limitations, or conflicting evidence
PAPER QUALITY AND POPULARITY PRIORITIZATION (CRITICAL):
8. ALWAYS prioritize HIGHLY-CITED papers over obscure publications:
- Recent papers (0-3 years): prefer 20+ citations, highlight 100+ as highly influential
- Mid-age papers (3-7 years): prefer 100+ citations, highlight 500+ as landmark
- Older papers (7+ years): prefer 500+ citations, highlight 1000+ as foundational
9. ALWAYS prioritize papers from TOP-TIER VENUES:
- Tier 1 (highest priority): Nature, Science, Cell, NEJM, Lancet, JAMA, PNAS, Nature Medicine, Nature Biotechnology
- Tier 2 (high priority): High-impact specialized journals (IF>10), top conferences (NeurIPS, ICML, ICLR for AI/ML)
- Tier 3: Respected specialized journals (IF 5-10)
- Only cite lower-tier venues if directly relevant AND no better source exists
10. PREFER papers from ESTABLISHED, REPUTABLE AUTHORS:
- Senior researchers with high h-index and multiple high-impact publications
- Leading research groups at recognized institutions
- Authors with recognized expertise (awards, editorial positions)
11. For EACH citation, include when available:
- Approximate citation count (e.g., "cited 500+ times")
- Journal/venue tier indicator
- Notable author credentials if relevant
12. PRIORITIZE papers that DIRECTLY address the research question over tangentially related work
RESPONSE FORMAT:
- Start with a brief summary (2-3 sentences)
- Present key findings and studies in organized sections
- Rank papers by impact: most influential/cited first
- End with future directions or research gaps if applicable
- Include 5-8 high-quality citations, emphasizing Tier-1 venues and highly-cited papers
Remember: Quality over quantity. Prioritize influential, highly-cited papers from prestigious venues and established researchers."""
def lookup(self, query: str) -> Dict[str, Any]:
"""Perform a research lookup for the given query."""
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
# Select model based on query complexity
model = self._select_model(query)
# Format the research prompt
research_prompt = self._format_research_prompt(query)
# Prepare messages for the API with system message for academic mode
messages = [
{
"role": "system",
"content": """You are an academic research assistant specializing in finding HIGH-IMPACT, INFLUENTIAL research.
QUALITY PRIORITIZATION (CRITICAL):
- ALWAYS prefer highly-cited papers over obscure publications
- ALWAYS prioritize Tier-1 venues: Nature, Science, Cell, NEJM, Lancet, JAMA, PNAS, and their family journals
- ALWAYS prefer papers from established researchers with strong publication records
- Include citation counts when known (e.g., "cited 500+ times")
- Quality matters more than quantity - 5 excellent papers beats 10 mediocre ones
VENUE HIERARCHY:
1. Nature/Science/Cell family, NEJM, Lancet, JAMA (highest priority)
2. High-impact specialized journals (IF>10), top ML conferences (NeurIPS, ICML, ICLR)
3. Respected field-specific journals (IF 5-10)
4. Other peer-reviewed sources (only if no better option exists)
Focus exclusively on scholarly sources: peer-reviewed journals, academic papers, research institutions. Prioritize recent academic literature (2020-2026) and provide complete citations with DOIs. Always indicate paper impact through citation counts and venue prestige."""
},
{"role": "user", "content": research_prompt}
]
try:
# Make the API request
response = self._make_request(messages, model)
# Extract the response content
if "choices" in response and len(response["choices"]) > 0:
choice = response["choices"][0]
if "message" in choice and "content" in choice["message"]:
content = choice["message"]["content"]
# Extract citations from API response (Perplexity provides these)
api_citations = self._extract_api_citations(response, choice)
# Also extract citations from text as fallback
text_citations = self._extract_citations_from_text(content)
# Combine: prioritize API citations, add text citations if no duplicates
citations = api_citations + text_citations
return {
"success": True,
"query": query,
"response": content,
"citations": citations,
"sources": api_citations, # Separate field for API-provided sources
"timestamp": timestamp,
"model": model,
"usage": response.get("usage", {})
}
else:
raise Exception("Invalid response format from API")
else:
raise Exception("No response choices received from API")
except Exception as e:
return {
"success": False,
"query": query,
"error": str(e),
"timestamp": timestamp,
"model": model
}
def _extract_api_citations(self, response: Dict[str, Any], choice: Dict[str, Any]) -> List[Dict[str, str]]:
"""Extract citations from Perplexity API response fields."""
citations = []
# Perplexity returns citations in search_results field (new format)
# Check multiple possible locations where OpenRouter might place them
search_results = (
response.get("search_results") or
choice.get("search_results") or
choice.get("message", {}).get("search_results") or
[]
)
for result in search_results:
citation = {
"type": "source",
"title": result.get("title", ""),
"url": result.get("url", ""),
"date": result.get("date", ""),
}
# Add snippet if available (newer API feature)
if result.get("snippet"):
citation["snippet"] = result.get("snippet")
citations.append(citation)
# Also check for legacy citations field (backward compatibility)
legacy_citations = (
response.get("citations") or
choice.get("citations") or
choice.get("message", {}).get("citations") or
[]
)
for url in legacy_citations:
if isinstance(url, str):
# Legacy format was just URLs
citations.append({
"type": "source",
"url": url,
"title": "",
"date": ""
})
elif isinstance(url, dict):
citations.append({
"type": "source",
"url": url.get("url", ""),
"title": url.get("title", ""),
"date": url.get("date", "")
})
return citations
def _extract_citations_from_text(self, text: str) -> List[Dict[str, str]]:
"""Extract potential citations from the response text as fallback."""
import re
citations = []
# Look for DOI patterns first (most reliable)
# Matches: doi:10.xxx, DOI: 10.xxx, https://doi.org/10.xxx
doi_pattern = r'(?:doi[:\s]*|https?://(?:dx\.)?doi\.org/)(10\.[0-9]{4,}/[^\s\)\]\,\[\<\>]+)'
doi_matches = re.findall(doi_pattern, text, re.IGNORECASE)
seen_dois = set()
for doi in doi_matches:
# Clean up DOI - remove trailing punctuation and brackets
doi_clean = doi.strip().rstrip('.,;:)]')
if doi_clean and doi_clean not in seen_dois:
seen_dois.add(doi_clean)
citations.append({
"type": "doi",
"doi": doi_clean,
"url": f"https://doi.org/{doi_clean}"
})
# Look for URLs that might be sources
url_pattern = r'https?://[^\s\)\]\,\<\>\"\']+(?:arxiv\.org|pubmed|ncbi\.nlm\.nih\.gov|nature\.com|science\.org|wiley\.com|springer\.com|ieee\.org|acm\.org)[^\s\)\]\,\<\>\"\']*'
url_matches = re.findall(url_pattern, text, re.IGNORECASE)
seen_urls = set()
for url in url_matches:
url_clean = url.rstrip('.')
if url_clean not in seen_urls:
seen_urls.add(url_clean)
citations.append({
"type": "url",
"url": url_clean
})
return citations
def batch_lookup(self, queries: List[str], delay: float = 1.0) -> List[Dict[str, Any]]:
"""Perform multiple research lookups with optional delay between requests."""
results = []
for i, query in enumerate(queries):
if i > 0 and delay > 0:
time.sleep(delay) # Rate limiting
result = self.lookup(query)
results.append(result)
# Print progress
print(f"[Research] Completed query {i+1}/{len(queries)}: {query[:50]}...")
return results
def get_model_info(self) -> Dict[str, Any]:
"""Get information about available models from OpenRouter."""
try:
response = requests.get(
f"{self.base_url}/models",
headers=self.headers,
timeout=30
)
response.raise_for_status()
return response.json()
except Exception as e:
return {"error": str(e)}
def main():
"""Command-line interface for testing the research lookup tool."""
import argparse
import sys
parser = argparse.ArgumentParser(description="Research Information Lookup Tool")
parser.add_argument("query", nargs="?", help="Research query to look up")
parser.add_argument("--model-info", action="store_true", help="Show available models")
parser.add_argument("--batch", nargs="+", help="Run multiple queries")
parser.add_argument("--force-model", choices=["pro", "reasoning"],
help="Force specific model: 'pro' for fast lookup, 'reasoning' for deep analysis")
parser.add_argument("-o", "--output", help="Write output to file instead of stdout")
parser.add_argument("--json", action="store_true", help="Output results as JSON")
args = parser.parse_args()
# Set up output destination
output_file = None
if args.output:
output_file = open(args.output, 'w', encoding='utf-8')
def write_output(text):
"""Write to file or stdout."""
if output_file:
output_file.write(text + '\n')
else:
print(text)
# Check for API key
if not os.getenv("OPENROUTER_API_KEY"):
print("Error: OPENROUTER_API_KEY environment variable not set", file=sys.stderr)
print("Please set it in your .env file or export it:", file=sys.stderr)
print(" export OPENROUTER_API_KEY='your_openrouter_api_key'", file=sys.stderr)
if output_file:
output_file.close()
return 1
try:
research = ResearchLookup(force_model=args.force_model)
if args.model_info:
write_output("Available models from OpenRouter:")
models = research.get_model_info()
if "data" in models:
for model in models["data"]:
if "perplexity" in model["id"].lower():
write_output(f" - {model['id']}: {model.get('name', 'N/A')}")
if output_file:
output_file.close()
return 0
if not args.query and not args.batch:
print("Error: No query provided. Use --model-info to see available models.", file=sys.stderr)
if output_file:
output_file.close()
return 1
if args.batch:
print(f"Running batch research for {len(args.batch)} queries...", file=sys.stderr)
results = research.batch_lookup(args.batch)
else:
print(f"Researching: {args.query}", file=sys.stderr)
results = [research.lookup(args.query)]
# Output as JSON if requested
if args.json:
write_output(json.dumps(results, indent=2, ensure_ascii=False))
if output_file:
output_file.close()
return 0
# Display results in human-readable format
for i, result in enumerate(results):
if result["success"]:
write_output(f"\n{'='*80}")
write_output(f"Query {i+1}: {result['query']}")
write_output(f"Timestamp: {result['timestamp']}")
write_output(f"Model: {result['model']}")
write_output(f"{'='*80}")
write_output(result["response"])
# Display API-provided sources first (most reliable)
sources = result.get("sources", [])
if sources:
write_output(f"\n📚 Sources ({len(sources)}):")
for j, source in enumerate(sources):
title = source.get("title", "Untitled")
url = source.get("url", "")
date = source.get("date", "")
date_str = f" ({date})" if date else ""
write_output(f" [{j+1}] {title}{date_str}")
if url:
write_output(f" {url}")
# Display additional text-extracted citations
citations = result.get("citations", [])
text_citations = [c for c in citations if c.get("type") in ("doi", "url")]
if text_citations:
write_output(f"\n🔗 Additional References ({len(text_citations)}):")
for j, citation in enumerate(text_citations):
if citation.get("type") == "doi":
write_output(f" [{j+1}] DOI: {citation.get('doi', '')} - {citation.get('url', '')}")
elif citation.get("type") == "url":
write_output(f" [{j+1}] {citation.get('url', '')}")
if result.get("usage"):
write_output(f"\nUsage: {result['usage']}")
else:
write_output(f"\nError in query {i+1}: {result['error']}")
if output_file:
output_file.close()
return 0
except Exception as e:
print(f"Error: {str(e)}", file=sys.stderr)
if output_file:
output_file.close()
return 1
if __name__ == "__main__":
exit(main())