15 KiB
name, description
| name | description |
|---|---|
| scientific-visualization | Create publication-ready scientific figures using best practices and guidelines for matplotlib, seaborn, and plotly. Use this skill when creating plots, charts, or visualizations for scientific papers, when figures need to meet journal requirements (Nature, Science, Cell, etc.), when ensuring colorblind accessibility, or when asked to make figures "publication-quality" or "publication-ready". Also use for multi-panel figures, data visualization with statistical rigor, and figures following specific style guidelines. |
Scientific Visualization
Overview
This skill provides comprehensive guidance, tools, and best practices for creating publication-ready scientific figures. It covers proper figure composition, colorblind-friendly design, journal-specific requirements, and practical implementation using matplotlib, seaborn, and plotly.
Publication-ready figures must be:
- Clear: Immediately understandable with proper labeling
- Accurate: Truthful data representation without distortion
- Accessible: Interpretable by readers with color vision deficiencies
- Professional: Polished appearance meeting journal standards
When to Use This Skill
Activate this skill when:
- Creating plots or visualizations for scientific manuscripts
- Preparing figures for journal submission (Nature, Science, Cell, PLOS, etc.)
- Ensuring figures are colorblind-friendly and accessible
- Making multi-panel figures with consistent styling
- Exporting figures at correct resolution and format
- Following specific publication guidelines
- Improving existing figures to meet publication standards
- Creating figures that need to work in both color and grayscale
Quick Start Guide
Basic Publication-Quality Figure
import matplotlib.pyplot as plt
import numpy as np
# Apply publication style (from scripts/style_presets.py)
from style_presets import apply_publication_style
apply_publication_style('default')
# Create figure with appropriate size (single column = 3.5 inches)
fig, ax = plt.subplots(figsize=(3.5, 2.5))
# Plot data
x = np.linspace(0, 10, 100)
ax.plot(x, np.sin(x), label='sin(x)')
ax.plot(x, np.cos(x), label='cos(x)')
# Proper labeling with units
ax.set_xlabel('Time (seconds)')
ax.set_ylabel('Amplitude (mV)')
ax.legend(frameon=False)
# Remove unnecessary spines
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
# Save in publication formats (from scripts/figure_export.py)
from figure_export import save_publication_figure
save_publication_figure(fig, 'figure1', formats=['pdf', 'png'], dpi=300)
Using Pre-configured Styles
Apply journal-specific styles using the matplotlib style files in assets/:
import matplotlib.pyplot as plt
# Option 1: Use style file directly
plt.style.use('assets/nature.mplstyle')
# Option 2: Use style_presets.py helper
from style_presets import configure_for_journal
configure_for_journal('nature', figure_width='single')
# Now create figures - they'll automatically match Nature specifications
fig, ax = plt.subplots()
# ... your plotting code ...
Core Principles and Best Practices
1. Resolution and File Format
Critical requirements (detailed in references/publication_guidelines.md):
- Raster images (photos, microscopy): 300-600 DPI
- Line art (graphs, plots): 600-1200 DPI or vector format
- Vector formats (preferred): PDF, EPS, SVG
- Raster formats: TIFF, PNG (never JPEG for scientific data)
Implementation:
# Use the figure_export.py script for correct settings
from figure_export import save_publication_figure
# Saves in multiple formats with proper DPI
save_publication_figure(fig, 'myfigure', formats=['pdf', 'png'], dpi=300)
# Or save for specific journal requirements
from figure_export import save_for_journal
save_for_journal(fig, 'figure1', journal='nature', figure_type='combination')
2. Color Selection - Colorblind Accessibility
Always use colorblind-friendly palettes (detailed in references/color_palettes.md):
Recommended: Okabe-Ito palette (distinguishable by all types of color blindness):
# Option 1: Use assets/color_palettes.py
from color_palettes import OKABE_ITO_LIST, apply_palette
apply_palette('okabe_ito')
# Option 2: Manual specification
okabe_ito = ['#E69F00', '#56B4E9', '#009E73', '#F0E442',
'#0072B2', '#D55E00', '#CC79A7', '#000000']
plt.rcParams['axes.prop_cycle'] = plt.cycler(color=okabe_ito)
For heatmaps/continuous data:
- Use perceptually uniform colormaps:
viridis,plasma,cividis - Avoid red-green diverging maps (use
PuOr,RdBu,BrBGinstead) - Never use
jetorrainbowcolormaps
Always test figures in grayscale to ensure interpretability.
3. Typography and Text
Font guidelines (detailed in references/publication_guidelines.md):
- Sans-serif fonts: Arial, Helvetica, Calibri
- Minimum sizes at final print size:
- Axis labels: 7-9 pt
- Tick labels: 6-8 pt
- Panel labels: 8-12 pt (bold)
- Sentence case for labels: "Time (hours)" not "TIME (HOURS)"
- Always include units in parentheses
Implementation:
# Set fonts globally
import matplotlib as mpl
mpl.rcParams['font.family'] = 'sans-serif'
mpl.rcParams['font.sans-serif'] = ['Arial', 'Helvetica']
mpl.rcParams['font.size'] = 8
mpl.rcParams['axes.labelsize'] = 9
mpl.rcParams['xtick.labelsize'] = 7
mpl.rcParams['ytick.labelsize'] = 7
4. Figure Dimensions
Journal-specific widths (detailed in references/journal_requirements.md):
- Nature: Single 89 mm, Double 183 mm
- Science: Single 55 mm, Double 175 mm
- Cell: Single 85 mm, Double 178 mm
Check figure size compliance:
from figure_export import check_figure_size
fig = plt.figure(figsize=(3.5, 3)) # 89 mm for Nature
check_figure_size(fig, journal='nature')
5. Multi-Panel Figures
Best practices:
- Label panels with bold letters: A, B, C (uppercase for most journals, lowercase for Nature)
- Maintain consistent styling across all panels
- Align panels along edges where possible
- Use adequate white space between panels
Example implementation (see references/matplotlib_examples.md for complete code):
from string import ascii_uppercase
fig = plt.figure(figsize=(7, 4))
gs = fig.add_gridspec(2, 2, hspace=0.4, wspace=0.4)
ax1 = fig.add_subplot(gs[0, 0])
ax2 = fig.add_subplot(gs[0, 1])
# ... create other panels ...
# Add panel labels
for i, ax in enumerate([ax1, ax2, ...]):
ax.text(-0.15, 1.05, ascii_uppercase[i], transform=ax.transAxes,
fontsize=10, fontweight='bold', va='top')
Common Tasks
Task 1: Create a Publication-Ready Line Plot
See references/matplotlib_examples.md Example 1 for complete code.
Key steps:
- Apply publication style
- Set appropriate figure size for target journal
- Use colorblind-friendly colors
- Add error bars with correct representation (SEM, SD, or CI)
- Label axes with units
- Remove unnecessary spines
- Save in vector format
Task 2: Create a Multi-Panel Figure
See references/matplotlib_examples.md Example 2 for complete code.
Key steps:
- Use
GridSpecfor flexible layout - Ensure consistent styling across panels
- Add bold panel labels (A, B, C, etc.)
- Align related panels
- Verify all text is readable at final size
Task 3: Create a Heatmap with Proper Colormap
See references/matplotlib_examples.md Example 4 for complete code.
Key steps:
- Use perceptually uniform colormap (
viridis,plasma,cividis) - Include labeled colorbar
- For diverging data, use colorblind-safe diverging map (
RdBu_r,PuOr) - Set appropriate center value for diverging maps
- Test appearance in grayscale
Task 4: Prepare Figure for Specific Journal
Workflow:
- Check journal requirements:
references/journal_requirements.md - Configure matplotlib for journal:
from style_presets import configure_for_journal configure_for_journal('nature', figure_width='single') - Create figure (will auto-size correctly)
- Export with journal specifications:
from figure_export import save_for_journal save_for_journal(fig, 'figure1', journal='nature', figure_type='line_art')
Task 5: Fix an Existing Figure to Meet Publication Standards
Checklist approach (full checklist in references/publication_guidelines.md):
- Check resolution: Verify DPI meets journal requirements
- Check file format: Use vector for plots, TIFF/PNG for images
- Check colors: Ensure colorblind-friendly
- Check fonts: Minimum 6-7 pt at final size, sans-serif
- Check labels: All axes labeled with units
- Check size: Matches journal column width
- Test grayscale: Figure interpretable without color
- Remove chart junk: No unnecessary grids, 3D effects, shadows
Task 6: Create Colorblind-Friendly Visualizations
Strategy:
- Use approved palettes from
assets/color_palettes.py - Add redundant encoding (line styles, markers, patterns)
- Test with colorblind simulator
- Ensure grayscale compatibility
Example:
from color_palettes import apply_palette
import matplotlib.pyplot as plt
apply_palette('okabe_ito')
# Add redundant encoding beyond color
line_styles = ['-', '--', '-.', ':']
markers = ['o', 's', '^', 'v']
for i, (data, label) in enumerate(datasets):
plt.plot(x, data, linestyle=line_styles[i % 4],
marker=markers[i % 4], label=label)
Statistical Rigor
Always include:
- Error bars (SD, SEM, or CI - specify which in caption)
- Sample size (n) in figure or caption
- Statistical significance markers (*, **, ***)
- Individual data points when possible (not just summary statistics)
Example with statistics:
# Show individual points with summary statistics
ax.scatter(x_jittered, individual_points, alpha=0.4, s=8)
ax.errorbar(x, means, yerr=sems, fmt='o', capsize=3)
# Mark significance
ax.text(1.5, max_y * 1.1, '***', ha='center', fontsize=8)
Working with Different Plotting Libraries
Matplotlib
- Most control over publication details
- Best for complex multi-panel figures
- Use provided style files for consistent formatting
- See
references/matplotlib_examples.mdfor extensive examples
Seaborn
- Built on matplotlib, inherits all matplotlib customizations
- Good for statistical plots
- Apply matplotlib styles first, then use seaborn
import seaborn as sns
from style_presets import apply_publication_style
apply_publication_style('default')
sns.set_palette(['#E69F00', '#56B4E9', '#009E73']) # Okabe-Ito colors
Plotly
- Interactive figures for exploration
- Export static images for publication
- Configure for publication quality:
fig.update_layout(
font=dict(family='Arial, sans-serif', size=10),
plot_bgcolor='white',
# ... see matplotlib_examples.md Example 8
)
fig.write_image('figure.png', scale=3) # scale=3 gives ~300 DPI
Resources
References Directory
Load these as needed for detailed information:
-
publication_guidelines.md: Comprehensive best practices- Resolution and file format requirements
- Typography guidelines
- Layout and composition rules
- Statistical rigor requirements
- Complete publication checklist
-
color_palettes.md: Color usage guide- Colorblind-friendly palette specifications with RGB values
- Sequential and diverging colormap recommendations
- Testing procedures for accessibility
- Domain-specific palettes (genomics, microscopy)
-
journal_requirements.md: Journal-specific specifications- Technical requirements by publisher
- File format and DPI specifications
- Figure dimension requirements
- Quick reference table
-
matplotlib_examples.md: Practical code examples- 10 complete working examples
- Line plots, bar plots, heatmaps, multi-panel figures
- Journal-specific figure examples
- Tips for each library (matplotlib, seaborn, plotly)
Scripts Directory
Use these helper scripts for automation:
-
figure_export.py: Export utilitiessave_publication_figure(): Save in multiple formats with correct DPIsave_for_journal(): Use journal-specific requirements automaticallycheck_figure_size(): Verify dimensions meet journal specs- Run directly:
python scripts/figure_export.pyfor examples
-
style_presets.py: Pre-configured stylesapply_publication_style(): Apply preset styles (default, nature, science, cell)set_color_palette(): Quick palette switchingconfigure_for_journal(): One-command journal configuration- Run directly:
python scripts/style_presets.pyto see examples
Assets Directory
Use these files in figures:
-
color_palettes.py: Importable color definitions- All recommended palettes as Python constants
apply_palette()helper function- Can be imported directly into notebooks/scripts
-
Matplotlib style files: Use with
plt.style.use()publication.mplstyle: General publication qualitynature.mplstyle: Nature journal specificationspresentation.mplstyle: Larger fonts for posters/slides
Workflow Summary
Recommended workflow for creating publication figures:
- Plan: Determine target journal, figure type, and content
- Configure: Apply appropriate style for journal
from style_presets import configure_for_journal configure_for_journal('nature', 'single') - Create: Build figure with proper labels, colors, statistics
- Verify: Check size, fonts, colors, accessibility
from figure_export import check_figure_size check_figure_size(fig, journal='nature') - Export: Save in required formats
from figure_export import save_for_journal save_for_journal(fig, 'figure1', 'nature', 'combination') - Review: View at final size in manuscript context
Common Pitfalls to Avoid
- Font too small: Text unreadable when printed at final size
- JPEG format: Never use JPEG for graphs/plots (creates artifacts)
- Red-green colors: ~8% of males cannot distinguish
- Low resolution: Pixelated figures in publication
- Missing units: Always label axes with units
- 3D effects: Distorts perception, avoid completely
- Chart junk: Remove unnecessary gridlines, decorations
- Truncated axes: Start bar charts at zero unless scientifically justified
- Inconsistent styling: Different fonts/colors across figures in same manuscript
- No error bars: Always show uncertainty
Final Checklist
Before submitting figures, verify:
- Resolution meets journal requirements (300+ DPI)
- File format is correct (vector for plots, TIFF for images)
- Figure size matches journal specifications
- All text readable at final size (≥6 pt)
- Colors are colorblind-friendly
- Figure works in grayscale
- All axes labeled with units
- Error bars present with definition in caption
- Panel labels present and consistent
- No chart junk or 3D effects
- Fonts consistent across all figures
- Statistical significance clearly marked
- Legend is clear and complete
Use this skill to ensure scientific figures meet the highest publication standards while remaining accessible to all readers.