Files
claude-scientific-skills/scientific-skills/cirq/references/noise.md

13 KiB

Noise Modeling and Mitigation

This guide covers noise models, noisy simulation, characterization, and error mitigation in Cirq.

Noise Channels

Depolarizing Noise

import cirq
import numpy as np

# Single-qubit depolarizing channel
depol_channel = cirq.depolarize(p=0.01)

# Apply to qubit
q = cirq.LineQubit(0)
noisy_op = depol_channel(q)

# Add to circuit
circuit = cirq.Circuit(
    cirq.H(q),
    depol_channel(q),
    cirq.measure(q, key='m')
)

Amplitude Damping

# Amplitude damping (T1 decay)
gamma = 0.1
amp_damp = cirq.amplitude_damp(gamma)

# Apply after gate
circuit = cirq.Circuit(
    cirq.X(q),
    amp_damp(q)
)

Phase Damping

# Phase damping (T2 dephasing)
gamma = 0.1
phase_damp = cirq.phase_damp(gamma)

circuit = cirq.Circuit(
    cirq.H(q),
    phase_damp(q)
)

Bit Flip Noise

# Bit flip channel
bit_flip_prob = 0.01
bit_flip = cirq.bit_flip(bit_flip_prob)

circuit = cirq.Circuit(
    cirq.H(q),
    bit_flip(q)
)

Phase Flip Noise

# Phase flip channel
phase_flip_prob = 0.01
phase_flip = cirq.phase_flip(phase_flip_prob)

circuit = cirq.Circuit(
    cirq.H(q),
    phase_flip(q)
)

Generalized Amplitude Damping

# Generalized amplitude damping
p = 0.1  # Damping probability
gamma = 0.2  # Excitation probability
gen_amp_damp = cirq.generalized_amplitude_damp(p=p, gamma=gamma)

Reset Channel

# Reset to |0⟩ or |1⟩
reset_to_zero = cirq.reset(q)

# Reset appears as measurement followed by conditional flip
circuit = cirq.Circuit(
    cirq.H(q),
    reset_to_zero
)

Noise Models

Constant Noise Model

# Apply same noise to all qubits
noise = cirq.ConstantQubitNoiseModel(
    qubit_noise_gate=cirq.depolarize(0.01)
)

# Simulate with noise
simulator = cirq.DensityMatrixSimulator(noise=noise)
result = simulator.run(circuit, repetitions=1000)

Gate-Specific Noise

class CustomNoiseModel(cirq.NoiseModel):
    """Apply different noise to different gate types."""

    def noisy_operation(self, op):
        # Single-qubit gates: depolarizing noise
        if len(op.qubits) == 1:
            return [op, cirq.depolarize(0.001)(op.qubits[0])]

        # Two-qubit gates: higher depolarizing noise
        elif len(op.qubits) == 2:
            return [
                op,
                cirq.depolarize(0.01)(op.qubits[0]),
                cirq.depolarize(0.01)(op.qubits[1])
            ]

        return op

# Use custom noise model
noise_model = CustomNoiseModel()
simulator = cirq.DensityMatrixSimulator(noise=noise_model)

Qubit-Specific Noise

class QubitSpecificNoise(cirq.NoiseModel):
    """Different noise for different qubits."""

    def __init__(self, qubit_noise_map):
        self.qubit_noise_map = qubit_noise_map

    def noisy_operation(self, op):
        noise_ops = [op]
        for qubit in op.qubits:
            if qubit in self.qubit_noise_map:
                noise = self.qubit_noise_map[qubit]
                noise_ops.append(noise(qubit))
        return noise_ops

# Define per-qubit noise
q0, q1, q2 = cirq.LineQubit.range(3)
noise_map = {
    q0: cirq.depolarize(0.001),
    q1: cirq.depolarize(0.005),
    q2: cirq.depolarize(0.002)
}

noise_model = QubitSpecificNoise(noise_map)

Thermal Noise

class ThermalNoise(cirq.NoiseModel):
    """Thermal relaxation noise."""

    def __init__(self, T1, T2, gate_time):
        self.T1 = T1  # Amplitude damping time
        self.T2 = T2  # Dephasing time
        self.gate_time = gate_time

    def noisy_operation(self, op):
        # Calculate probabilities
        p_amp = 1 - np.exp(-self.gate_time / self.T1)
        p_phase = 1 - np.exp(-self.gate_time / self.T2)

        noise_ops = [op]
        for qubit in op.qubits:
            noise_ops.append(cirq.amplitude_damp(p_amp)(qubit))
            noise_ops.append(cirq.phase_damp(p_phase)(qubit))

        return noise_ops

# Typical superconducting qubit parameters
T1 = 50e-6  # 50 μs
T2 = 30e-6  # 30 μs
gate_time = 25e-9  # 25 ns

noise_model = ThermalNoise(T1, T2, gate_time)

Adding Noise to Circuits

with_noise Method

# Add noise to all operations
noisy_circuit = circuit.with_noise(cirq.depolarize(p=0.01))

# Simulate noisy circuit
simulator = cirq.DensityMatrixSimulator()
result = simulator.run(noisy_circuit, repetitions=1000)

insert_into_circuit Method

# Manual noise insertion
def add_noise_to_circuit(circuit, noise_model):
    noisy_moments = []
    for moment in circuit:
        ops = []
        for op in moment:
            ops.extend(noise_model.noisy_operation(op))
        noisy_moments.append(cirq.Moment(ops))
    return cirq.Circuit(noisy_moments)

Readout Noise

Measurement Error Model

class ReadoutNoiseModel(cirq.NoiseModel):
    """Model readout/measurement errors."""

    def __init__(self, p0_given_1, p1_given_0):
        # p0_given_1: Probability of measuring 0 when state is 1
        # p1_given_0: Probability of measuring 1 when state is 0
        self.p0_given_1 = p0_given_1
        self.p1_given_0 = p1_given_0

    def noisy_operation(self, op):
        if isinstance(op.gate, cirq.MeasurementGate):
            # Apply bit flip before measurement
            noise_ops = []
            for qubit in op.qubits:
                # Average readout error
                p_error = (self.p0_given_1 + self.p1_given_0) / 2
                noise_ops.append(cirq.bit_flip(p_error)(qubit))
            noise_ops.append(op)
            return noise_ops
        return op

# Typical readout errors
readout_noise = ReadoutNoiseModel(p0_given_1=0.02, p1_given_0=0.01)

Noise Characterization

Randomized Benchmarking

import cirq

def generate_rb_circuit(qubits, depth):
    """Generate randomized benchmarking circuit."""
    # Random Clifford gates
    clifford_gates = [cirq.X, cirq.Y, cirq.Z, cirq.H, cirq.S]

    circuit = cirq.Circuit()
    for _ in range(depth):
        for qubit in qubits:
            gate = np.random.choice(clifford_gates)
            circuit.append(gate(qubit))

    # Add inverse to return to initial state (ideally)
    # (simplified - proper RB requires tracking full sequence)

    circuit.append(cirq.measure(*qubits, key='result'))
    return circuit

# Run RB experiment
def run_rb_experiment(qubits, depths, repetitions=1000):
    """Run randomized benchmarking at various depths."""
    simulator = cirq.DensityMatrixSimulator(
        noise=cirq.ConstantQubitNoiseModel(cirq.depolarize(0.01))
    )

    survival_probs = []
    for depth in depths:
        circuits = [generate_rb_circuit(qubits, depth) for _ in range(20)]

        total_survival = 0
        for circuit in circuits:
            result = simulator.run(circuit, repetitions=repetitions)
            # Calculate survival probability (returned to |0⟩)
            counts = result.histogram(key='result')
            survival = counts.get(0, 0) / repetitions
            total_survival += survival

        avg_survival = total_survival / len(circuits)
        survival_probs.append(avg_survival)

    return survival_probs

# Fit to extract error rate
# p_survival = A * p^depth + B
# Error per gate ≈ (1 - p) / 2

Cross-Entropy Benchmarking (XEB)

def xeb_fidelity(circuit, simulator, ideal_probs, repetitions=10000):
    """Calculate XEB fidelity."""

    # Run noisy simulation
    result = simulator.run(circuit, repetitions=repetitions)
    measured_probs = result.histogram(key='result')

    # Normalize
    for key in measured_probs:
        measured_probs[key] /= repetitions

    # Calculate cross-entropy
    cross_entropy = 0
    for bitstring, prob in measured_probs.items():
        if bitstring in ideal_probs:
            cross_entropy += prob * np.log2(ideal_probs[bitstring])

    # Convert to fidelity
    n_qubits = len(circuit.all_qubits())
    fidelity = (2**n_qubits * cross_entropy + 1) / (2**n_qubits - 1)

    return fidelity

Noise Visualization

Heatmap Visualization

import matplotlib.pyplot as plt

def plot_noise_heatmap(device, noise_metric):
    """Plot noise characteristics across 2D grid device."""

    # Get device qubits (assuming GridQubit)
    qubits = sorted(device.metadata.qubit_set)
    rows = max(q.row for q in qubits) + 1
    cols = max(q.col for q in qubits) + 1

    # Create heatmap data
    heatmap = np.full((rows, cols), np.nan)

    for qubit in qubits:
        if isinstance(qubit, cirq.GridQubit):
            value = noise_metric.get(qubit, 0)
            heatmap[qubit.row, qubit.col] = value

    # Plot
    plt.figure(figsize=(10, 8))
    plt.imshow(heatmap, cmap='RdYlGn_r', interpolation='nearest')
    plt.colorbar(label='Error Rate')
    plt.title('Qubit Error Rates')
    plt.xlabel('Column')
    plt.ylabel('Row')
    plt.show()

# Example usage
noise_metric = {q: np.random.random() * 0.01 for q in device.metadata.qubit_set}
plot_noise_heatmap(device, noise_metric)

Gate Fidelity Visualization

def plot_gate_fidelities(calibration_data):
    """Plot single- and two-qubit gate fidelities."""

    sq_fidelities = []
    tq_fidelities = []

    for qubit, metrics in calibration_data.items():
        if 'single_qubit_rb_fidelity' in metrics:
            sq_fidelities.append(metrics['single_qubit_rb_fidelity'])
        if 'two_qubit_rb_fidelity' in metrics:
            tq_fidelities.append(metrics['two_qubit_rb_fidelity'])

    fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))

    ax1.hist(sq_fidelities, bins=20)
    ax1.set_xlabel('Single-Qubit Gate Fidelity')
    ax1.set_ylabel('Count')
    ax1.set_title('Single-Qubit Gate Fidelities')

    ax2.hist(tq_fidelities, bins=20)
    ax2.set_xlabel('Two-Qubit Gate Fidelity')
    ax2.set_ylabel('Count')
    ax2.set_title('Two-Qubit Gate Fidelities')

    plt.tight_layout()
    plt.show()

Error Mitigation Techniques

Zero-Noise Extrapolation

def zero_noise_extrapolation(circuit, noise_levels, simulator):
    """Extrapolate to zero noise limit."""

    expectation_values = []

    for noise_level in noise_levels:
        # Scale noise
        noisy_circuit = circuit.with_noise(
            cirq.depolarize(p=noise_level)
        )

        # Measure expectation
        result = simulator.simulate(noisy_circuit)
        # ... calculate expectation value
        exp_val = calculate_expectation(result)
        expectation_values.append(exp_val)

    # Extrapolate to zero noise
    from scipy.optimize import curve_fit

    def exponential_fit(x, a, b, c):
        return a * np.exp(-b * x) + c

    popt, _ = curve_fit(exponential_fit, noise_levels, expectation_values)
    zero_noise_value = popt[2]

    return zero_noise_value

Probabilistic Error Cancellation

def quasi_probability_decomposition(noisy_gate, ideal_gate, noise_model):
    """Decompose noisy gate into quasi-probability distribution."""

    # Decompose noisy gate as: N = ideal + error
    # Invert: ideal = (N - error) / (1 - error_rate)

    # This creates a quasi-probability distribution
    # (some probabilities may be negative)

    # Implementation depends on specific noise model
    pass

Readout Error Mitigation

def mitigate_readout_errors(results, confusion_matrix):
    """Apply readout error mitigation using confusion matrix."""

    # Invert confusion matrix
    inv_confusion = np.linalg.inv(confusion_matrix)

    # Get measured counts
    counts = results.histogram(key='result')

    # Convert to probability vector
    total_counts = sum(counts.values())
    measured_probs = np.array([counts.get(i, 0) / total_counts
                               for i in range(len(confusion_matrix))])

    # Apply inverse
    corrected_probs = inv_confusion @ measured_probs

    # Convert back to counts
    corrected_counts = {i: int(p * total_counts)
                       for i, p in enumerate(corrected_probs) if p > 0}

    return corrected_counts

Hardware-Based Noise Models

From Google Calibration

import cirq_google

# Get calibration data
processor = cirq_google.get_engine().get_processor('weber')
noise_props = processor.get_device_specification()

# Create noise model from calibration
noise_model = cirq_google.NoiseModelFromGoogleNoiseProperties(noise_props)

# Simulate with realistic noise
simulator = cirq.DensityMatrixSimulator(noise=noise_model)
result = simulator.run(circuit, repetitions=1000)

Best Practices

  1. Use density matrix simulator for noisy simulations: State vector simulators cannot model mixed states
  2. Match noise model to hardware: Use calibration data when available
  3. Include all error sources: Gate errors, decoherence, readout errors
  4. Characterize before mitigating: Understand noise before applying mitigation
  5. Consider error propagation: Noise compounds through circuit depth
  6. Use appropriate benchmarking: RB for gate errors, XEB for full circuit fidelity
  7. Visualize noise patterns: Identify problematic qubits and gates
  8. Apply targeted mitigation: Focus on dominant error sources
  9. Validate mitigation: Verify that mitigation improves results
  10. Keep circuits shallow: Minimize noise accumulation