Files
claude-scientific-skills/scientific-skills/cirq/references/building.md

5.8 KiB

Building Quantum Circuits

This guide covers circuit construction in Cirq, including qubits, gates, operations, and circuit patterns.

Basic Circuit Construction

Creating Circuits

import cirq

# Create a circuit
circuit = cirq.Circuit()

# Create qubits
q0 = cirq.GridQubit(0, 0)
q1 = cirq.GridQubit(0, 1)
q2 = cirq.LineQubit(0)

# Add gates to circuit
circuit.append([
    cirq.H(q0),
    cirq.CNOT(q0, q1),
    cirq.measure(q0, q1, key='result')
])

Qubit Types

GridQubit: 2D grid topology for hardware-like layouts

qubits = cirq.GridQubit.square(2)  # 2x2 grid
qubit = cirq.GridQubit(row=0, col=1)

LineQubit: 1D linear topology

qubits = cirq.LineQubit.range(5)  # 5 qubits in a line
qubit = cirq.LineQubit(3)

NamedQubit: Custom-named qubits

qubit = cirq.NamedQubit('my_qubit')

Common Gates and Operations

Single-Qubit Gates

# Pauli gates
cirq.X(qubit)  # NOT gate
cirq.Y(qubit)
cirq.Z(qubit)

# Hadamard
cirq.H(qubit)

# Rotation gates
cirq.rx(angle)(qubit)  # Rotation around X-axis
cirq.ry(angle)(qubit)  # Rotation around Y-axis
cirq.rz(angle)(qubit)  # Rotation around Z-axis

# Phase gates
cirq.S(qubit)  # √Z gate
cirq.T(qubit)  # ⁴√Z gate

Two-Qubit Gates

# CNOT (Controlled-NOT)
cirq.CNOT(control, target)
cirq.CX(control, target)  # Alias

# CZ (Controlled-Z)
cirq.CZ(q0, q1)

# SWAP
cirq.SWAP(q0, q1)

# iSWAP
cirq.ISWAP(q0, q1)

# Controlled rotations
cirq.CZPowGate(exponent=0.5)(q0, q1)

Measurement Operations

# Measure single qubit
cirq.measure(qubit, key='m')

# Measure multiple qubits
cirq.measure(q0, q1, q2, key='result')

# Measure all qubits in circuit
circuit.append(cirq.measure(*qubits, key='final'))

Advanced Circuit Construction

Parameterized Gates

import sympy

# Create symbolic parameters
theta = sympy.Symbol('theta')
phi = sympy.Symbol('phi')

# Use in gates
circuit = cirq.Circuit(
    cirq.rx(theta)(q0),
    cirq.ry(phi)(q1),
    cirq.CNOT(q0, q1)
)

# Resolve parameters later
resolved = cirq.resolve_parameters(circuit, {'theta': 0.5, 'phi': 1.2})

Custom Gates via Unitaries

import numpy as np

# Define unitary matrix
unitary = np.array([
    [1, 0, 0, 0],
    [0, 1, 0, 0],
    [0, 0, 0, 1],
    [0, 0, 1, 0]
]) / np.sqrt(2)

# Create gate from unitary
gate = cirq.MatrixGate(unitary)
operation = gate(q0, q1)

Gate Decomposition

# Define custom gate with decomposition
class MyGate(cirq.Gate):
    def _num_qubits_(self):
        return 1

    def _decompose_(self, qubits):
        q = qubits[0]
        return [cirq.H(q), cirq.T(q), cirq.H(q)]

    def _circuit_diagram_info_(self, args):
        return 'MyGate'

# Use the custom gate
my_gate = MyGate()
circuit.append(my_gate(q0))

Circuit Organization

Moments

Circuits are organized into moments (parallel operations):

# Explicit moment construction
circuit = cirq.Circuit(
    cirq.Moment([cirq.H(q0), cirq.H(q1)]),
    cirq.Moment([cirq.CNOT(q0, q1)]),
    cirq.Moment([cirq.measure(q0, key='m0'), cirq.measure(q1, key='m1')])
)

# Access moments
for i, moment in enumerate(circuit):
    print(f"Moment {i}: {moment}")

Circuit Operations

# Concatenate circuits
circuit3 = circuit1 + circuit2

# Insert operations
circuit.insert(index, operation)

# Append with strategy
circuit.append(operations, strategy=cirq.InsertStrategy.NEW_THEN_INLINE)

Circuit Patterns

Bell State Preparation

def bell_state_circuit():
    q0, q1 = cirq.LineQubit.range(2)
    return cirq.Circuit(
        cirq.H(q0),
        cirq.CNOT(q0, q1)
    )

GHZ State

def ghz_circuit(qubits):
    circuit = cirq.Circuit()
    circuit.append(cirq.H(qubits[0]))
    for i in range(len(qubits) - 1):
        circuit.append(cirq.CNOT(qubits[i], qubits[i+1]))
    return circuit

Quantum Fourier Transform

def qft_circuit(qubits):
    circuit = cirq.Circuit()
    for i, q in enumerate(qubits):
        circuit.append(cirq.H(q))
        for j in range(i + 1, len(qubits)):
            circuit.append(cirq.CZPowGate(exponent=1/2**(j-i))(qubits[j], q))

    # Reverse qubit order
    for i in range(len(qubits) // 2):
        circuit.append(cirq.SWAP(qubits[i], qubits[len(qubits) - i - 1]))

    return circuit

Circuit Import/Export

OpenQASM

# Export to QASM
qasm_str = circuit.to_qasm()

# Import from QASM
from cirq.contrib.qasm_import import circuit_from_qasm
circuit = circuit_from_qasm(qasm_str)

Circuit JSON

import json

# Serialize
json_str = cirq.to_json(circuit)

# Deserialize
circuit = cirq.read_json(json_text=json_str)

Working with Qudits

Qudits are higher-dimensional quantum systems (qutrits, ququarts, etc.):

# Create qutrit (3-level system)
qutrit = cirq.LineQid(0, dimension=3)

# Custom qutrit gate
class QutritXGate(cirq.Gate):
    def _qid_shape_(self):
        return (3,)

    def _unitary_(self):
        return np.array([
            [0, 0, 1],
            [1, 0, 0],
            [0, 1, 0]
        ])

gate = QutritXGate()
circuit = cirq.Circuit(gate(qutrit))

Observables

Create observables from Pauli operators:

# Single Pauli observable
obs = cirq.Z(q0)

# Pauli string
obs = cirq.X(q0) * cirq.Y(q1) * cirq.Z(q2)

# Linear combination
from cirq import PauliSum
obs = 0.5 * cirq.X(q0) + 0.3 * cirq.Z(q1)

Best Practices

  1. Use appropriate qubit types: GridQubit for hardware-like topologies, LineQubit for 1D problems
  2. Keep circuits modular: Build reusable circuit functions
  3. Use symbolic parameters: For parameter sweeps and optimization
  4. Label measurements clearly: Use descriptive keys for measurement results
  5. Document custom gates: Include circuit diagram information for visualization