Files
claude-scientific-skills/scientific-packages/arboreto/scripts/basic_grn_inference.py
Timothy Kassis 152d0d54de Initial commit
2025-10-19 14:01:29 -07:00

111 lines
3.2 KiB
Python

#!/usr/bin/env python3
"""
Basic GRN inference script using arboreto GRNBoost2.
This script demonstrates the standard workflow for gene regulatory network inference:
1. Load expression data
2. Optionally load transcription factor names
3. Run GRNBoost2 inference
4. Save results
Usage:
python basic_grn_inference.py <expression_file> [options]
Example:
python basic_grn_inference.py expression_data.tsv -t tf_names.txt -o network.tsv
"""
import argparse
import pandas as pd
from arboreto.algo import grnboost2
from arboreto.utils import load_tf_names
def main():
parser = argparse.ArgumentParser(
description='Infer gene regulatory network using GRNBoost2'
)
parser.add_argument(
'expression_file',
help='Path to expression data file (TSV/CSV format)'
)
parser.add_argument(
'-t', '--tf-file',
help='Path to file containing transcription factor names (one per line)',
default=None
)
parser.add_argument(
'-o', '--output',
help='Output file path for network results',
default='network_output.tsv'
)
parser.add_argument(
'-s', '--seed',
type=int,
help='Random seed for reproducibility',
default=42
)
parser.add_argument(
'--sep',
help='Separator for input file (default: tab)',
default='\t'
)
parser.add_argument(
'--transpose',
action='store_true',
help='Transpose the expression matrix (use if genes are rows)'
)
args = parser.parse_args()
# Load expression data
print(f"Loading expression data from {args.expression_file}...")
expression_data = pd.read_csv(args.expression_file, sep=args.sep, index_col=0)
# Transpose if needed
if args.transpose:
print("Transposing expression matrix...")
expression_data = expression_data.T
print(f"Expression data shape: {expression_data.shape}")
print(f" Observations (rows): {expression_data.shape[0]}")
print(f" Genes (columns): {expression_data.shape[1]}")
# Load TF names if provided
tf_names = None
if args.tf_file:
print(f"Loading transcription factor names from {args.tf_file}...")
tf_names = load_tf_names(args.tf_file)
print(f" Found {len(tf_names)} transcription factors")
else:
print("No TF file provided. Using all genes as potential regulators.")
# Run GRNBoost2
print("\nRunning GRNBoost2 inference...")
print(" (This may take a while depending on dataset size)")
network = grnboost2(
expression_data=expression_data,
tf_names=tf_names,
seed=args.seed
)
print(f"\nInference complete!")
print(f" Total regulatory links inferred: {len(network)}")
print(f" Unique TFs: {network['TF'].nunique()}")
print(f" Unique targets: {network['target'].nunique()}")
# Save results
print(f"\nSaving results to {args.output}...")
network.to_csv(args.output, sep='\t', index=False)
# Display top 10 predictions
print("\nTop 10 predicted regulatory relationships:")
print(network.head(10).to_string(index=False))
print("\nDone!")
if __name__ == '__main__':
main()