Files
claude-scientific-skills/scientific-packages/scikit-learn/scripts/classification_pipeline.py
2025-10-19 14:12:02 -07:00

220 lines
6.3 KiB
Python

#!/usr/bin/env python3
"""
Complete classification pipeline with preprocessing, training, evaluation, and hyperparameter tuning.
Demonstrates best practices for scikit-learn workflows.
"""
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split, cross_val_score, GridSearchCV
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.impute import SimpleImputer
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report, confusion_matrix, roc_auc_score
import joblib
def create_preprocessing_pipeline(numeric_features, categorical_features):
"""
Create preprocessing pipeline for mixed data types.
Args:
numeric_features: List of numeric column names
categorical_features: List of categorical column names
Returns:
ColumnTransformer with appropriate preprocessing for each data type
"""
numeric_transformer = Pipeline(steps=[
('imputer', SimpleImputer(strategy='median')),
('scaler', StandardScaler())
])
categorical_transformer = Pipeline(steps=[
('imputer', SimpleImputer(strategy='constant', fill_value='missing')),
('onehot', OneHotEncoder(handle_unknown='ignore', sparse_output=True))
])
preprocessor = ColumnTransformer(
transformers=[
('num', numeric_transformer, numeric_features),
('cat', categorical_transformer, categorical_features)
])
return preprocessor
def create_full_pipeline(preprocessor, classifier=None):
"""
Create complete ML pipeline with preprocessing and classification.
Args:
preprocessor: Preprocessing ColumnTransformer
classifier: Classifier instance (default: RandomForestClassifier)
Returns:
Complete Pipeline
"""
if classifier is None:
classifier = RandomForestClassifier(n_estimators=100, random_state=42, n_jobs=-1)
pipeline = Pipeline(steps=[
('preprocessor', preprocessor),
('classifier', classifier)
])
return pipeline
def evaluate_model(pipeline, X_train, y_train, X_test, y_test, cv=5):
"""
Evaluate model using cross-validation and test set.
Args:
pipeline: Trained pipeline
X_train, y_train: Training data
X_test, y_test: Test data
cv: Number of cross-validation folds
Returns:
Dictionary with evaluation results
"""
# Cross-validation on training set
cv_scores = cross_val_score(pipeline, X_train, y_train, cv=cv, scoring='accuracy')
# Test set evaluation
y_pred = pipeline.predict(X_test)
test_score = pipeline.score(X_test, y_test)
# Get probabilities if available
try:
y_proba = pipeline.predict_proba(X_test)
if len(np.unique(y_test)) == 2:
# Binary classification
auc = roc_auc_score(y_test, y_proba[:, 1])
else:
# Multiclass
auc = roc_auc_score(y_test, y_proba, multi_class='ovr')
except:
auc = None
results = {
'cv_mean': cv_scores.mean(),
'cv_std': cv_scores.std(),
'test_score': test_score,
'auc': auc,
'classification_report': classification_report(y_test, y_pred),
'confusion_matrix': confusion_matrix(y_test, y_pred)
}
return results
def tune_hyperparameters(pipeline, X_train, y_train, param_grid, cv=5):
"""
Perform hyperparameter tuning using GridSearchCV.
Args:
pipeline: Pipeline to tune
X_train, y_train: Training data
param_grid: Dictionary of parameters to search
cv: Number of cross-validation folds
Returns:
GridSearchCV object with best model
"""
grid_search = GridSearchCV(
pipeline,
param_grid,
cv=cv,
scoring='f1_weighted',
n_jobs=-1,
verbose=1
)
grid_search.fit(X_train, y_train)
print(f"Best parameters: {grid_search.best_params_}")
print(f"Best CV score: {grid_search.best_score_:.3f}")
return grid_search
def main():
"""
Example usage of the classification pipeline.
"""
# Load your data here
# X, y = load_data()
# Example with synthetic data
from sklearn.datasets import make_classification
X, y = make_classification(
n_samples=1000,
n_features=20,
n_informative=15,
n_redundant=5,
random_state=42
)
# Convert to DataFrame for demonstration
feature_names = [f'feature_{i}' for i in range(X.shape[1])]
X = pd.DataFrame(X, columns=feature_names)
# Split features into numeric and categorical (all numeric in this example)
numeric_features = feature_names
categorical_features = []
# Split data (use stratify for imbalanced classes)
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=42, stratify=y
)
# Create preprocessing pipeline
preprocessor = create_preprocessing_pipeline(numeric_features, categorical_features)
# Create full pipeline
pipeline = create_full_pipeline(preprocessor)
# Train model
print("Training model...")
pipeline.fit(X_train, y_train)
# Evaluate model
print("\nEvaluating model...")
results = evaluate_model(pipeline, X_train, y_train, X_test, y_test)
print(f"CV Accuracy: {results['cv_mean']:.3f} (+/- {results['cv_std']:.3f})")
print(f"Test Accuracy: {results['test_score']:.3f}")
if results['auc']:
print(f"ROC-AUC: {results['auc']:.3f}")
print("\nClassification Report:")
print(results['classification_report'])
# Hyperparameter tuning (optional)
print("\nTuning hyperparameters...")
param_grid = {
'classifier__n_estimators': [100, 200],
'classifier__max_depth': [10, 20, None],
'classifier__min_samples_split': [2, 5]
}
grid_search = tune_hyperparameters(pipeline, X_train, y_train, param_grid)
# Evaluate best model
print("\nEvaluating tuned model...")
best_pipeline = grid_search.best_estimator_
y_pred = best_pipeline.predict(X_test)
print(classification_report(y_test, y_pred))
# Save model
print("\nSaving model...")
joblib.dump(best_pipeline, 'best_model.pkl')
print("Model saved as 'best_model.pkl'")
if __name__ == "__main__":
main()