mirror of
https://github.com/K-Dense-AI/claude-scientific-skills.git
synced 2026-01-26 16:58:56 +08:00
242 lines
6.5 KiB
Python
242 lines
6.5 KiB
Python
#!/usr/bin/env python3
|
|
"""
|
|
Fine-tune a transformer model for text classification.
|
|
|
|
This script demonstrates the complete workflow for fine-tuning a pre-trained
|
|
model on a classification task using the Trainer API.
|
|
"""
|
|
|
|
import numpy as np
|
|
from datasets import load_dataset
|
|
from transformers import (
|
|
AutoTokenizer,
|
|
AutoModelForSequenceClassification,
|
|
TrainingArguments,
|
|
Trainer,
|
|
DataCollatorWithPadding,
|
|
)
|
|
import evaluate
|
|
|
|
|
|
def load_and_prepare_data(dataset_name="imdb", model_name="distilbert-base-uncased", max_samples=None):
|
|
"""
|
|
Load dataset and tokenize.
|
|
|
|
Args:
|
|
dataset_name: Name of the dataset to load
|
|
model_name: Name of the model/tokenizer to use
|
|
max_samples: Limit number of samples (for quick testing)
|
|
|
|
Returns:
|
|
tokenized_datasets, tokenizer
|
|
"""
|
|
print(f"Loading dataset: {dataset_name}")
|
|
dataset = load_dataset(dataset_name)
|
|
|
|
# Optionally limit samples for quick testing
|
|
if max_samples:
|
|
dataset["train"] = dataset["train"].select(range(max_samples))
|
|
dataset["test"] = dataset["test"].select(range(min(max_samples, len(dataset["test"]))))
|
|
|
|
print(f"Loading tokenizer: {model_name}")
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
|
def tokenize_function(examples):
|
|
return tokenizer(
|
|
examples["text"],
|
|
padding="max_length",
|
|
truncation=True,
|
|
max_length=512
|
|
)
|
|
|
|
print("Tokenizing dataset...")
|
|
tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
|
|
|
return tokenized_datasets, tokenizer
|
|
|
|
|
|
def create_model(model_name, num_labels, id2label, label2id):
|
|
"""
|
|
Create classification model.
|
|
|
|
Args:
|
|
model_name: Name of the pre-trained model
|
|
num_labels: Number of classification labels
|
|
id2label: Dictionary mapping label IDs to names
|
|
label2id: Dictionary mapping label names to IDs
|
|
|
|
Returns:
|
|
model
|
|
"""
|
|
print(f"Loading model: {model_name}")
|
|
model = AutoModelForSequenceClassification.from_pretrained(
|
|
model_name,
|
|
num_labels=num_labels,
|
|
id2label=id2label,
|
|
label2id=label2id
|
|
)
|
|
return model
|
|
|
|
|
|
def define_compute_metrics(metric_name="accuracy"):
|
|
"""
|
|
Define function to compute metrics during evaluation.
|
|
|
|
Args:
|
|
metric_name: Name of the metric to use
|
|
|
|
Returns:
|
|
compute_metrics function
|
|
"""
|
|
metric = evaluate.load(metric_name)
|
|
|
|
def compute_metrics(eval_pred):
|
|
logits, labels = eval_pred
|
|
predictions = np.argmax(logits, axis=-1)
|
|
return metric.compute(predictions=predictions, references=labels)
|
|
|
|
return compute_metrics
|
|
|
|
|
|
def train_model(model, tokenizer, train_dataset, eval_dataset, output_dir="./results"):
|
|
"""
|
|
Train the model.
|
|
|
|
Args:
|
|
model: The model to train
|
|
tokenizer: The tokenizer
|
|
train_dataset: Training dataset
|
|
eval_dataset: Evaluation dataset
|
|
output_dir: Directory for checkpoints and logs
|
|
|
|
Returns:
|
|
trained model, trainer
|
|
"""
|
|
# Define training arguments
|
|
training_args = TrainingArguments(
|
|
output_dir=output_dir,
|
|
num_train_epochs=3,
|
|
per_device_train_batch_size=16,
|
|
per_device_eval_batch_size=64,
|
|
learning_rate=2e-5,
|
|
weight_decay=0.01,
|
|
eval_strategy="epoch",
|
|
save_strategy="epoch",
|
|
load_best_model_at_end=True,
|
|
metric_for_best_model="accuracy",
|
|
logging_dir=f"{output_dir}/logs",
|
|
logging_steps=100,
|
|
save_total_limit=2,
|
|
fp16=False, # Set to True if using GPU with fp16 support
|
|
)
|
|
|
|
# Create data collator
|
|
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
|
|
|
# Create trainer
|
|
trainer = Trainer(
|
|
model=model,
|
|
args=training_args,
|
|
train_dataset=train_dataset,
|
|
eval_dataset=eval_dataset,
|
|
data_collator=data_collator,
|
|
compute_metrics=define_compute_metrics("accuracy"),
|
|
)
|
|
|
|
# Train
|
|
print("\nStarting training...")
|
|
trainer.train()
|
|
|
|
# Evaluate
|
|
print("\nEvaluating model...")
|
|
eval_results = trainer.evaluate()
|
|
print(f"Evaluation results: {eval_results}")
|
|
|
|
return model, trainer
|
|
|
|
|
|
def test_inference(model, tokenizer, id2label):
|
|
"""
|
|
Test the trained model with sample texts.
|
|
|
|
Args:
|
|
model: Trained model
|
|
tokenizer: Tokenizer
|
|
id2label: Dictionary mapping label IDs to names
|
|
"""
|
|
print("\n=== Testing Inference ===")
|
|
|
|
test_texts = [
|
|
"This movie was absolutely fantastic! I loved every minute of it.",
|
|
"Terrible film. Waste of time and money.",
|
|
"It was okay, nothing special but not bad either."
|
|
]
|
|
|
|
for text in test_texts:
|
|
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
|
|
outputs = model(**inputs)
|
|
predictions = outputs.logits.argmax(-1)
|
|
predicted_label = id2label[predictions.item()]
|
|
confidence = outputs.logits.softmax(-1).max().item()
|
|
|
|
print(f"\nText: {text}")
|
|
print(f"Prediction: {predicted_label} (confidence: {confidence:.3f})")
|
|
|
|
|
|
def main():
|
|
"""Main training pipeline."""
|
|
# Configuration
|
|
DATASET_NAME = "imdb"
|
|
MODEL_NAME = "distilbert-base-uncased"
|
|
OUTPUT_DIR = "./results"
|
|
MAX_SAMPLES = None # Set to a small number (e.g., 1000) for quick testing
|
|
|
|
# Label mapping
|
|
id2label = {0: "negative", 1: "positive"}
|
|
label2id = {"negative": 0, "positive": 1}
|
|
num_labels = len(id2label)
|
|
|
|
print("=" * 60)
|
|
print("Fine-Tuning Text Classification Model")
|
|
print("=" * 60)
|
|
|
|
# Load and prepare data
|
|
tokenized_datasets, tokenizer = load_and_prepare_data(
|
|
dataset_name=DATASET_NAME,
|
|
model_name=MODEL_NAME,
|
|
max_samples=MAX_SAMPLES
|
|
)
|
|
|
|
# Create model
|
|
model = create_model(
|
|
model_name=MODEL_NAME,
|
|
num_labels=num_labels,
|
|
id2label=id2label,
|
|
label2id=label2id
|
|
)
|
|
|
|
# Train model
|
|
model, trainer = train_model(
|
|
model=model,
|
|
tokenizer=tokenizer,
|
|
train_dataset=tokenized_datasets["train"],
|
|
eval_dataset=tokenized_datasets["test"],
|
|
output_dir=OUTPUT_DIR
|
|
)
|
|
|
|
# Save final model
|
|
print(f"\nSaving model to {OUTPUT_DIR}/final_model")
|
|
trainer.save_model(f"{OUTPUT_DIR}/final_model")
|
|
tokenizer.save_pretrained(f"{OUTPUT_DIR}/final_model")
|
|
|
|
# Test inference
|
|
test_inference(model, tokenizer, id2label)
|
|
|
|
print("\n" + "=" * 60)
|
|
print("Training completed successfully!")
|
|
print("=" * 60)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|