mirror of
https://github.com/K-Dense-AI/claude-scientific-skills.git
synced 2026-01-26 16:58:56 +08:00
11 KiB
11 KiB
QuTiP Advanced Features
Floquet Theory
For time-periodic Hamiltonians H(t + T) = H(t).
Floquet Modes and Quasi-Energies
from qutip import *
import numpy as np
# Time-periodic Hamiltonian
w_d = 1.0 # Drive frequency
T = 2 * np.pi / w_d # Period
H0 = sigmaz()
H1 = sigmax()
H = [H0, [H1, 'cos(w*t)']]
args = {'w': w_d}
# Calculate Floquet modes and quasi-energies
f_modes, f_energies = floquet_modes(H, T, args)
print("Quasi-energies:", f_energies)
print("Floquet modes:", f_modes)
Floquet States at Time t
# Get Floquet state at specific time
t = 1.0
f_states_t = floquet_states(f_modes, f_energies, t)
Floquet State Decomposition
# Decompose initial state in Floquet basis
psi0 = basis(2, 0)
f_coeff = floquet_state_decomposition(f_modes, f_energies, psi0)
Floquet-Markov Master Equation
# Time evolution with dissipation
c_ops = [np.sqrt(0.1) * sigmam()]
tlist = np.linspace(0, 20, 200)
result = fmmesolve(H, psi0, tlist, c_ops, e_ops=[sigmaz()], T=T, args=args)
# Plot results
import matplotlib.pyplot as plt
plt.plot(tlist, result.expect[0])
plt.xlabel('Time')
plt.ylabel('⟨σz⟩')
plt.show()
Floquet Tensor
# Floquet tensor (generalized Bloch-Redfield)
A_ops = [[sigmaz(), lambda w: 0.1 * w if w > 0 else 0]]
# Build Floquet tensor
R, U = floquet_markov_mesolve(H, psi0, tlist, A_ops, e_ops=[sigmaz()],
T=T, args=args)
Effective Hamiltonian
# Time-averaged effective Hamiltonian
H_eff = floquet_master_equation_steadystate(H, c_ops, T, args)
Hierarchical Equations of Motion (HEOM)
For non-Markovian open quantum systems with strong system-bath coupling.
Basic HEOM Setup
from qutip import heom
# System Hamiltonian
H_sys = sigmaz()
# Bath correlation function (exponential)
Q = sigmax() # System-bath coupling operator
ck_real = [0.1] # Coupling strengths
vk_real = [0.5] # Bath frequencies
# HEOM bath
bath = heom.BosonicBath(Q, ck_real, vk_real)
# Initial state
rho0 = basis(2, 0) * basis(2, 0).dag()
# Create HEOM solver
max_depth = 5
hsolver = heom.HEOMSolver(H_sys, [bath], max_depth=max_depth)
# Time evolution
tlist = np.linspace(0, 10, 100)
result = hsolver.run(rho0, tlist)
# Extract reduced system density matrix
rho_sys = [r.extract_state(0) for r in result.states]
Multiple Baths
# Define multiple baths
bath1 = heom.BosonicBath(sigmax(), [0.1], [0.5])
bath2 = heom.BosonicBath(sigmay(), [0.05], [1.0])
hsolver = heom.HEOMSolver(H_sys, [bath1, bath2], max_depth=5)
Drude-Lorentz Spectral Density
# Common in condensed matter physics
from qutip.nonmarkov.heom import DrudeLorentzBath
lam = 0.1 # Reorganization energy
gamma = 0.5 # Bath cutoff frequency
T = 1.0 # Temperature (in energy units)
Nk = 2 # Number of Matsubara terms
bath = DrudeLorentzBath(Q, lam, gamma, T, Nk)
HEOM Options
options = heom.HEOMSolver.Options(
nsteps=2000,
store_states=True,
rtol=1e-7,
atol=1e-9
)
hsolver = heom.HEOMSolver(H_sys, [bath], max_depth=5, options=options)
Permutational Invariance
For identical particle systems (e.g., spin ensembles).
Dicke States
from qutip import dicke
# Dicke state |j, m⟩ for N spins
N = 10 # Number of spins
j = N/2 # Total angular momentum
m = 0 # z-component
psi = dicke(N, j, m)
Permutation-Invariant Operators
from qutip.piqs import jspin
# Collective spin operators
N = 10
Jx = jspin(N, 'x')
Jy = jspin(N, 'y')
Jz = jspin(N, 'z')
Jp = jspin(N, '+')
Jm = jspin(N, '-')
PIQS Dynamics
from qutip.piqs import Dicke
# Setup Dicke model
N = 10
emission = 1.0
dephasing = 0.5
pumping = 0.0
collective_emission = 0.0
system = Dicke(N=N, emission=emission, dephasing=dephasing,
pumping=pumping, collective_emission=collective_emission)
# Initial state
psi0 = dicke(N, N/2, N/2) # All spins up
# Time evolution
tlist = np.linspace(0, 10, 100)
result = system.solve(psi0, tlist, e_ops=[Jz])
Non-Markovian Monte Carlo
Quantum trajectories with memory effects.
from qutip import nm_mcsolve
# Non-Markovian bath correlation
def bath_correlation(t1, t2):
tau = abs(t2 - t1)
return np.exp(-tau / 2.0) * np.cos(tau)
# System setup
H = sigmaz()
c_ops = [sigmax()]
psi0 = basis(2, 0)
tlist = np.linspace(0, 10, 100)
# Solve with memory
result = nm_mcsolve(H, psi0, tlist, c_ops, sc_ops=[],
bath_corr=bath_correlation, ntraj=500,
e_ops=[sigmaz()])
Stochastic Solvers with Measurements
Continuous Measurement
# Homodyne detection
sc_ops = [np.sqrt(0.1) * destroy(N)] # Measurement operator
result = ssesolve(H, psi0, tlist, sc_ops=sc_ops,
e_ops=[num(N)], ntraj=100,
noise=11) # 11 for homodyne
# Heterodyne detection
result = ssesolve(H, psi0, tlist, sc_ops=sc_ops,
e_ops=[num(N)], ntraj=100,
noise=12) # 12 for heterodyne
Photon Counting
# Quantum jump times
result = mcsolve(H, psi0, tlist, c_ops, ntraj=50,
options=Options(store_states=True))
# Extract measurement times
for i, jump_times in enumerate(result.col_times):
print(f"Trajectory {i} jump times: {jump_times}")
print(f"Which operator: {result.col_which[i]}")
Krylov Subspace Methods
Efficient for large systems.
from qutip import krylovsolve
# Use Krylov solver
result = krylovsolve(H, psi0, tlist, krylov_dim=10, e_ops=[num(N)])
Bloch-Redfield Master Equation
For weak system-bath coupling.
# Bath spectral density
def ohmic_spectrum(w):
if w >= 0:
return 0.1 * w # Ohmic
else:
return 0
# Coupling operators and spectra
a_ops = [[sigmax(), ohmic_spectrum]]
# Solve
result = brmesolve(H, psi0, tlist, a_ops, e_ops=[sigmaz()])
Temperature-Dependent Bath
def thermal_spectrum(w):
# Bose-Einstein distribution
T = 1.0 # Temperature
if abs(w) < 1e-10:
return 0.1 * T
n_th = 1 / (np.exp(abs(w)/T) - 1)
if w >= 0:
return 0.1 * w * (n_th + 1)
else:
return 0.1 * abs(w) * n_th
a_ops = [[sigmax(), thermal_spectrum]]
result = brmesolve(H, psi0, tlist, a_ops, e_ops=[sigmaz()])
Superoperators and Quantum Channels
Superoperator Representations
# Liouvillian
L = liouvillian(H, c_ops)
# Convert between representations
from qutip import (spre, spost, sprepost,
super_to_choi, choi_to_super,
super_to_kraus, kraus_to_super)
# Superoperator forms
L_spre = spre(H) # Left multiplication
L_spost = spost(H) # Right multiplication
L_sprepost = sprepost(H, H.dag())
# Choi matrix
choi = super_to_choi(L)
# Kraus operators
kraus = super_to_kraus(L)
Quantum Channels
# Depolarizing channel
p = 0.1 # Error probability
K0 = np.sqrt(1 - 3*p/4) * qeye(2)
K1 = np.sqrt(p/4) * sigmax()
K2 = np.sqrt(p/4) * sigmay()
K3 = np.sqrt(p/4) * sigmaz()
kraus_ops = [K0, K1, K2, K3]
E = kraus_to_super(kraus_ops)
# Apply channel
rho_out = E * operator_to_vector(rho_in)
rho_out = vector_to_operator(rho_out)
Amplitude Damping
# T1 decay
gamma = 0.1
K0 = Qobj([[1, 0], [0, np.sqrt(1 - gamma)]])
K1 = Qobj([[0, np.sqrt(gamma)], [0, 0]])
E_damping = kraus_to_super([K0, K1])
Phase Damping
# T2 dephasing
gamma = 0.1
K0 = Qobj([[1, 0], [0, np.sqrt(1 - gamma/2)]])
K1 = Qobj([[0, 0], [0, np.sqrt(gamma/2)]])
E_dephasing = kraus_to_super([K0, K1])
Quantum Trajectories Analysis
Extract Individual Trajectories
options = Options(store_states=True, store_final_state=False)
result = mcsolve(H, psi0, tlist, c_ops, ntraj=100, options=options)
# Access individual trajectories
for i in range(len(result.states)):
trajectory = result.states[i] # List of states for trajectory i
# Analyze trajectory
Trajectory Statistics
# Mean and standard deviation
result = mcsolve(H, psi0, tlist, c_ops, e_ops=[num(N)], ntraj=500)
n_mean = result.expect[0]
n_std = result.std_expect[0]
# Photon number distribution at final time
final_states = [result.states[i][-1] for i in range(len(result.states))]
Time-Dependent Terms Advanced
QobjEvo
from qutip import QobjEvo
# Time-dependent Hamiltonian with QobjEvo
def drive(t, args):
return args['A'] * np.exp(-t/args['tau']) * np.sin(args['w'] * t)
H0 = num(N)
H1 = destroy(N) + create(N)
args = {'A': 1.0, 'w': 1.0, 'tau': 5.0}
H_td = QobjEvo([H0, [H1, drive]], args=args)
# Can update args without recreating
H_td.arguments({'A': 2.0, 'w': 1.5, 'tau': 10.0})
Compiled Time-Dependent Terms
# Fastest method (requires Cython)
H = [num(N), [destroy(N) + create(N), 'A * exp(-t/tau) * sin(w*t)']]
args = {'A': 1.0, 'w': 1.0, 'tau': 5.0}
# QuTiP compiles this for speed
result = sesolve(H, psi0, tlist, args=args)
Callback Functions
# Advanced control
def time_dependent_coeff(t, args):
# Access solver state if needed
return complex_function(t, args)
H = [H0, [H1, time_dependent_coeff]]
Parallel Processing
Parallel Map
from qutip import parallel_map
# Define task
def simulate(gamma):
c_ops = [np.sqrt(gamma) * destroy(N)]
result = mesolve(H, psi0, tlist, c_ops, e_ops=[num(N)])
return result.expect[0]
# Run in parallel
gamma_values = np.linspace(0, 1, 20)
results = parallel_map(simulate, gamma_values, num_cpus=4)
Serial Map (for debugging)
from qutip import serial_map
# Same interface but runs serially
results = serial_map(simulate, gamma_values)
File I/O
Save/Load Quantum Objects
# Save
H.save('hamiltonian.qu')
psi.save('state.qu')
# Load
H_loaded = qload('hamiltonian.qu')
psi_loaded = qload('state.qu')
Save/Load Results
# Save simulation results
result = mesolve(H, psi0, tlist, c_ops, e_ops=[num(N)])
result.save('simulation.dat')
# Load results
from qutip import Result
loaded_result = Result.load('simulation.dat')
Export to MATLAB
# Export to .mat file
H.matlab_export('hamiltonian.mat', 'H')
Solver Options
Fine-Tuning Solvers
options = Options()
# Integration parameters
options.nsteps = 10000 # Max internal steps
options.rtol = 1e-8 # Relative tolerance
options.atol = 1e-10 # Absolute tolerance
# Method selection
options.method = 'adams' # Non-stiff (default)
# options.method = 'bdf' # Stiff problems
# Storage options
options.store_states = True
options.store_final_state = True
# Progress
options.progress_bar = True
# Random number seed (for reproducibility)
options.seeds = 12345
result = mesolve(H, psi0, tlist, c_ops, options=options)
Debugging
# Enable detailed output
options.verbose = True
# Memory tracking
options.num_cpus = 1 # Easier debugging
Performance Tips
- Use sparse matrices: QuTiP does this automatically
- Minimize Hilbert space: Truncate when possible
- Choose right solver:
- Pure states:
sesolvefaster thanmesolve - Stochastic:
mcsolvefor quantum jumps - Periodic: Floquet methods
- Pure states:
- Time-dependent terms: String format fastest
- Expectation values: Only compute needed observables
- Parallel trajectories:
mcsolveuses all CPUs - Krylov methods: For very large systems
- Memory: Use
store_final_stateinstead ofstore_stateswhen possible