mirror of
https://github.com/K-Dense-AI/claude-scientific-skills.git
synced 2026-01-26 16:58:56 +08:00
8.0 KiB
8.0 KiB
Simulation in Cirq
This guide covers quantum circuit simulation, including exact and noisy simulations, parameter sweeps, and the Quantum Virtual Machine (QVM).
Exact Simulation
Basic Simulation
import cirq
import numpy as np
# Create circuit
q0, q1 = cirq.LineQubit.range(2)
circuit = cirq.Circuit(
cirq.H(q0),
cirq.CNOT(q0, q1),
cirq.measure(q0, q1, key='result')
)
# Simulate
simulator = cirq.Simulator()
result = simulator.run(circuit, repetitions=1000)
# Get measurement results
print(result.histogram(key='result'))
State Vector Simulation
# Simulate without measurement to get final state
simulator = cirq.Simulator()
result = simulator.simulate(circuit_without_measurement)
# Access state vector
state_vector = result.final_state_vector
print(f"State vector: {state_vector}")
# Get amplitudes
print(f"Amplitude of |00⟩: {state_vector[0]}")
print(f"Amplitude of |11⟩: {state_vector[3]}")
Density Matrix Simulation
# Use density matrix simulator for mixed states
simulator = cirq.DensityMatrixSimulator()
result = simulator.simulate(circuit)
# Access density matrix
density_matrix = result.final_density_matrix
print(f"Density matrix shape: {density_matrix.shape}")
Step-by-Step Simulation
# Simulate moment-by-moment
simulator = cirq.Simulator()
for step in simulator.simulate_moment_steps(circuit):
print(f"State after moment {step.moment}: {step.state_vector()}")
Sampling and Measurements
Run Multiple Shots
# Run circuit multiple times
result = simulator.run(circuit, repetitions=10000)
# Access measurement counts
counts = result.histogram(key='result')
print(f"Measurement counts: {counts}")
# Get raw measurements
measurements = result.measurements['result']
print(f"Shape: {measurements.shape}") # (repetitions, num_qubits)
Expectation Values
# Measure observable expectation value
from cirq import PauliString
observable = PauliString({q0: cirq.Z, q1: cirq.Z})
result = simulator.simulate_expectation_values(
circuit,
observables=[observable]
)
print(f"⟨ZZ⟩ = {result[0]}")
Parameter Sweeps
Sweep Over Parameters
import sympy
# Create parameterized circuit
theta = sympy.Symbol('theta')
q = cirq.LineQubit(0)
circuit = cirq.Circuit(
cirq.ry(theta)(q),
cirq.measure(q, key='m')
)
# Define parameter sweep
sweep = cirq.Linspace(key='theta', start=0, stop=2*np.pi, length=50)
# Run sweep
simulator = cirq.Simulator()
results = simulator.run_sweep(circuit, params=sweep, repetitions=1000)
# Process results
for params, result in zip(sweep, results):
theta_val = params['theta']
counts = result.histogram(key='m')
print(f"θ={theta_val:.2f}: {counts}")
Multiple Parameters
# Sweep over multiple parameters
theta = sympy.Symbol('theta')
phi = sympy.Symbol('phi')
circuit = cirq.Circuit(
cirq.ry(theta)(q0),
cirq.rz(phi)(q1)
)
# Product sweep (all combinations)
sweep = cirq.Product(
cirq.Linspace('theta', 0, np.pi, 10),
cirq.Linspace('phi', 0, 2*np.pi, 10)
)
results = simulator.run_sweep(circuit, params=sweep, repetitions=100)
Zip Sweep (Paired Parameters)
# Sweep parameters together
sweep = cirq.Zip(
cirq.Linspace('theta', 0, np.pi, 20),
cirq.Linspace('phi', 0, 2*np.pi, 20)
)
results = simulator.run_sweep(circuit, params=sweep, repetitions=100)
Noisy Simulation
Adding Noise Channels
# Create noisy circuit
noisy_circuit = circuit.with_noise(cirq.depolarize(p=0.01))
# Simulate noisy circuit
simulator = cirq.DensityMatrixSimulator()
result = simulator.run(noisy_circuit, repetitions=1000)
Custom Noise Models
# Apply different noise to different gates
noise_model = cirq.NoiseModel.from_noise_model_like(
cirq.ConstantQubitNoiseModel(cirq.depolarize(0.01))
)
# Simulate with noise model
result = cirq.DensityMatrixSimulator(noise=noise_model).run(
circuit, repetitions=1000
)
See noise.md for comprehensive noise modeling details.
State Histograms
Visualize Results
import matplotlib.pyplot as plt
# Get histogram
result = simulator.run(circuit, repetitions=1000)
counts = result.histogram(key='result')
# Plot
plt.bar(counts.keys(), counts.values())
plt.xlabel('State')
plt.ylabel('Counts')
plt.title('Measurement Results')
plt.show()
State Probability Distribution
# Get state vector
result = simulator.simulate(circuit_without_measurement)
state_vector = result.final_state_vector
# Compute probabilities
probabilities = np.abs(state_vector) ** 2
# Plot
plt.bar(range(len(probabilities)), probabilities)
plt.xlabel('Basis State Index')
plt.ylabel('Probability')
plt.show()
Quantum Virtual Machine (QVM)
QVM simulates realistic quantum hardware with device-specific constraints and noise.
Using Virtual Devices
# Use a virtual Google device
import cirq_google
# Get virtual device
device = cirq_google.Sycamore
# Create circuit on device
qubits = device.metadata.qubit_set
circuit = cirq.Circuit(device=device)
# Add operations respecting device constraints
circuit.append(cirq.CZ(qubits[0], qubits[1]))
# Validate circuit against device
device.validate_circuit(circuit)
Noisy Virtual Hardware
# Simulate with device noise
processor = cirq_google.get_engine().get_processor('weber')
noise_props = processor.get_device_specification()
# Create realistic noisy simulator
noisy_sim = cirq.DensityMatrixSimulator(
noise=cirq_google.NoiseModelFromGoogleNoiseProperties(noise_props)
)
result = noisy_sim.run(circuit, repetitions=1000)
Advanced Simulation Techniques
Custom Initial State
# Start from custom state
initial_state = np.array([1, 0, 0, 1]) / np.sqrt(2) # |00⟩ + |11⟩
simulator = cirq.Simulator()
result = simulator.simulate(circuit, initial_state=initial_state)
Partial Trace
# Trace out subsystems
result = simulator.simulate(circuit)
full_state = result.final_state_vector
# Compute reduced density matrix for first qubit
from cirq import partial_trace
reduced_dm = partial_trace(result.final_density_matrix, keep_indices=[0])
Intermediate State Access
# Get state at specific moment
simulator = cirq.Simulator()
for i, step in enumerate(simulator.simulate_moment_steps(circuit)):
if i == 5: # After 5th moment
state = step.state_vector()
print(f"State after moment 5: {state}")
break
Simulation Performance
Optimizing Large Simulations
- Use state vector for pure states: Faster than density matrix
- Avoid density matrix when possible: Exponentially more expensive
- Batch parameter sweeps: More efficient than individual runs
- Use appropriate repetitions: Balance accuracy vs computation time
# Efficient: Single sweep
results = simulator.run_sweep(circuit, params=sweep, repetitions=100)
# Inefficient: Multiple individual runs
results = [simulator.run(circuit, param_resolver=p, repetitions=100)
for p in sweep]
Memory Considerations
# For large systems, monitor state vector size
n_qubits = 20
state_size = 2**n_qubits * 16 # bytes (complex128)
print(f"State vector size: {state_size / 1e9:.2f} GB")
Stabilizer Simulation
For circuits with only Clifford gates, use efficient stabilizer simulation:
# Clifford circuit (H, S, CNOT)
circuit = cirq.Circuit(
cirq.H(q0),
cirq.S(q1),
cirq.CNOT(q0, q1)
)
# Use stabilizer simulator (exponentially faster)
simulator = cirq.CliffordSimulator()
result = simulator.run(circuit, repetitions=1000)
Best Practices
- Choose appropriate simulator: Use Simulator for pure states, DensityMatrixSimulator for mixed states
- Use parameter sweeps: More efficient than running individual circuits
- Validate circuits: Check circuit validity before long simulations
- Monitor resource usage: Track memory for large-scale simulations
- Use stabilizer simulation: When circuits contain only Clifford gates
- Save intermediate results: For long parameter sweeps or optimization runs