mirror of
https://github.com/K-Dense-AI/claude-scientific-skills.git
synced 2026-01-26 16:58:56 +08:00
12 KiB
12 KiB
pyOpenMS Data Structures Reference
This document provides comprehensive coverage of core data structures in pyOpenMS for representing mass spectrometry data.
Core Hierarchy
MSExperiment # Top-level: Complete LC-MS/MS run
├── MSSpectrum[] # Collection of mass spectra
│ ├── Peak1D[] # Individual m/z, intensity pairs
│ └── SpectrumSettings # Metadata (RT, MS level, precursor)
└── MSChromatogram[] # Collection of chromatograms
├── ChromatogramPeak[] # RT, intensity pairs
└── ChromatogramSettings # Metadata
MSSpectrum
Represents a single mass spectrum (1-dimensional peak data).
Creation and Basic Properties
import pyopenms as oms
# Create empty spectrum
spectrum = oms.MSSpectrum()
# Set metadata
spectrum.setRT(123.45) # Retention time in seconds
spectrum.setMSLevel(1) # MS level (1 for MS1, 2 for MS2, etc.)
spectrum.setNativeID("scan=1234") # Native ID from file
# Additional metadata
spectrum.setDriftTime(15.2) # Ion mobility drift time
spectrum.setName("MyScan") # Optional name
Peak Data Management
Setting Peaks (Method 1 - Lists):
mz_values = [100.5, 200.3, 300.7, 400.2, 500.1]
intensity_values = [1000, 5000, 3000, 2000, 1500]
spectrum.set_peaks((mz_values, intensity_values))
Setting Peaks (Method 2 - NumPy arrays):
import numpy as np
mz_array = np.array([100.5, 200.3, 300.7, 400.2, 500.1])
intensity_array = np.array([1000, 5000, 3000, 2000, 1500])
spectrum.set_peaks((mz_array, intensity_array))
Retrieving Peaks:
# Get as numpy arrays (efficient)
mz_array, intensity_array = spectrum.get_peaks()
# Check number of peaks
n_peaks = spectrum.size()
# Get individual peak (slower)
for i in range(spectrum.size()):
peak = spectrum[i]
mz = peak.getMZ()
intensity = peak.getIntensity()
Precursor Information (for MS2/MSn spectra)
# Create precursor
precursor = oms.Precursor()
precursor.setMZ(456.789) # Precursor m/z
precursor.setCharge(2) # Precursor charge
precursor.setIntensity(50000) # Precursor intensity
precursor.setIsolationWindowLowerOffset(1.5) # Lower isolation window
precursor.setIsolationWindowUpperOffset(1.5) # Upper isolation window
# Set activation method
activation = oms.Activation()
activation.setActivationEnergy(35.0) # Collision energy
activation.setMethod(oms.Activation.ActivationMethod.CID)
precursor.setActivation(activation)
# Assign to spectrum
spectrum.setPrecursors([precursor])
# Retrieve precursor information
precursors = spectrum.getPrecursors()
if len(precursors) > 0:
prec = precursors[0]
print(f"Precursor m/z: {prec.getMZ()}")
print(f"Precursor charge: {prec.getCharge()}")
Spectrum Metadata Access
# Check if spectrum is sorted by m/z
is_sorted = spectrum.isSorted()
# Sort spectrum by m/z
spectrum.sortByPosition()
# Sort by intensity
spectrum.sortByIntensity()
# Clear all peaks
spectrum.clear(False) # False = keep metadata, True = clear everything
# Get retention time
rt = spectrum.getRT()
# Get MS level
ms_level = spectrum.getMSLevel()
Spectrum Types and Modes
# Set spectrum type
spectrum.setType(oms.SpectrumSettings.SpectrumType.CENTROID) # or PROFILE
# Get spectrum type
spec_type = spectrum.getType()
if spec_type == oms.SpectrumSettings.SpectrumType.CENTROID:
print("Centroid spectrum")
elif spec_type == oms.SpectrumSettings.SpectrumType.PROFILE:
print("Profile spectrum")
Data Processing Annotations
# Add processing information
processing = oms.DataProcessing()
processing.setMetaValue("smoothing", "gaussian")
spectrum.setDataProcessing([processing])
MSExperiment
Represents a complete LC-MS/MS experiment containing multiple spectra and chromatograms.
Creation and Population
# Create empty experiment
exp = oms.MSExperiment()
# Add spectra
spectrum1 = oms.MSSpectrum()
spectrum1.setRT(100.0)
spectrum1.set_peaks(([100, 200], [1000, 2000]))
spectrum2 = oms.MSSpectrum()
spectrum2.setRT(200.0)
spectrum2.set_peaks(([100, 200], [1500, 2500]))
exp.addSpectrum(spectrum1)
exp.addSpectrum(spectrum2)
# Add chromatograms
chrom = oms.MSChromatogram()
chrom.set_peaks(([10.5, 11.0, 11.5], [1000, 5000, 3000]))
exp.addChromatogram(chrom)
Accessing Spectra and Chromatograms
# Get number of spectra and chromatograms
n_spectra = exp.getNrSpectra()
n_chroms = exp.getNrChromatograms()
# Access by index
first_spectrum = exp.getSpectrum(0)
last_spectrum = exp.getSpectrum(exp.getNrSpectra() - 1)
# Iterate over all spectra
for spectrum in exp:
rt = spectrum.getRT()
ms_level = spectrum.getMSLevel()
n_peaks = spectrum.size()
print(f"RT: {rt:.2f}s, MS{ms_level}, Peaks: {n_peaks}")
# Get all spectra as list
spectra = exp.getSpectra()
# Access chromatograms
chrom = exp.getChromatogram(0)
Filtering Operations
# Filter by MS level
exp.filterMSLevel(1) # Keep only MS1 spectra
exp.filterMSLevel(2) # Keep only MS2 spectra
# Filter by retention time range
exp.filterRT(100.0, 500.0) # Keep RT between 100-500 seconds
# Filter by m/z range (all spectra)
exp.filterMZ(300.0, 1500.0) # Keep m/z between 300-1500
# Filter by scan number
exp.filterScanNumber(100, 200) # Keep scans 100-200
Metadata and Properties
# Set experiment metadata
exp.setMetaValue("operator", "John Doe")
exp.setMetaValue("instrument", "Q Exactive HF")
# Get metadata
operator = exp.getMetaValue("operator")
# Get RT range
rt_range = exp.getMinRT(), exp.getMaxRT()
# Get m/z range
mz_range = exp.getMinMZ(), exp.getMaxMZ()
# Clear all data
exp.clear(False) # False = keep metadata
Sorting and Organization
# Sort spectra by retention time
exp.sortSpectra()
# Update ranges (call after modifications)
exp.updateRanges()
# Check if experiment is empty
is_empty = exp.empty()
# Reset (clear everything)
exp.reset()
MSChromatogram
Represents an extracted or reconstructed chromatogram (retention time vs. intensity).
Creation and Basic Usage
# Create chromatogram
chrom = oms.MSChromatogram()
# Set peaks (RT, intensity pairs)
rt_values = [10.0, 10.5, 11.0, 11.5, 12.0]
intensity_values = [1000, 5000, 8000, 6000, 2000]
chrom.set_peaks((rt_values, intensity_values))
# Get peaks
rt_array, int_array = chrom.get_peaks()
# Get size
n_points = chrom.size()
Chromatogram Types
# Set chromatogram type
chrom.setChromatogramType(oms.ChromatogramSettings.ChromatogramType.SELECTED_ION_CURRENT_CHROMATOGRAM)
# Other types:
# - TOTAL_ION_CURRENT_CHROMATOGRAM
# - BASEPEAK_CHROMATOGRAM
# - SELECTED_ION_CURRENT_CHROMATOGRAM
# - SELECTED_REACTION_MONITORING_CHROMATOGRAM
Metadata
# Set native ID
chrom.setNativeID("TIC")
# Set name
chrom.setName("Total Ion Current")
# Access
native_id = chrom.getNativeID()
name = chrom.getName()
Precursor and Product Information (for SRM/MRM)
# For targeted experiments
precursor = oms.Precursor()
precursor.setMZ(456.7)
chrom.setPrecursor(precursor)
product = oms.Product()
product.setMZ(789.4)
chrom.setProduct(product)
Peak1D and ChromatogramPeak
Individual peak data points.
Peak1D (for mass spectra)
# Create individual peak
peak = oms.Peak1D()
peak.setMZ(456.789)
peak.setIntensity(10000)
# Access
mz = peak.getMZ()
intensity = peak.getIntensity()
# Set position and intensity
peak.setPosition([456.789])
peak.setIntensity(10000)
ChromatogramPeak (for chromatograms)
# Create chromatogram peak
chrom_peak = oms.ChromatogramPeak()
chrom_peak.setRT(125.5)
chrom_peak.setIntensity(5000)
# Access
rt = chrom_peak.getRT()
intensity = chrom_peak.getIntensity()
FeatureMap and Feature
For quantification results.
Feature
Represents a detected LC-MS feature (peptide or metabolite signal).
# Create feature
feature = oms.Feature()
# Set properties
feature.setMZ(456.789)
feature.setRT(123.45)
feature.setIntensity(1000000)
feature.setCharge(2)
feature.setWidth(15.0) # RT width in seconds
# Set quality score
feature.setOverallQuality(0.95)
# Access
mz = feature.getMZ()
rt = feature.getRT()
intensity = feature.getIntensity()
charge = feature.getCharge()
FeatureMap
Collection of features.
# Create feature map
feature_map = oms.FeatureMap()
# Add features
feature1 = oms.Feature()
feature1.setMZ(456.789)
feature1.setRT(123.45)
feature1.setIntensity(1000000)
feature_map.push_back(feature1)
# Get size
n_features = feature_map.size()
# Iterate
for feature in feature_map:
print(f"m/z: {feature.getMZ():.4f}, RT: {feature.getRT():.2f}")
# Access by index
first_feature = feature_map[0]
# Clear
feature_map.clear()
PeptideIdentification and ProteinIdentification
For identification results.
PeptideIdentification
# Create peptide identification
pep_id = oms.PeptideIdentification()
pep_id.setRT(123.45)
pep_id.setMZ(456.789)
# Create peptide hit
hit = oms.PeptideHit()
hit.setSequence(oms.AASequence.fromString("PEPTIDE"))
hit.setCharge(2)
hit.setScore(25.5)
hit.setRank(1)
# Add to identification
pep_id.setHits([hit])
pep_id.setHigherScoreBetter(True)
pep_id.setScoreType("XCorr")
# Access
hits = pep_id.getHits()
for hit in hits:
seq = hit.getSequence().toString()
score = hit.getScore()
print(f"Sequence: {seq}, Score: {score}")
ProteinIdentification
# Create protein identification
prot_id = oms.ProteinIdentification()
# Create protein hit
prot_hit = oms.ProteinHit()
prot_hit.setAccession("P12345")
prot_hit.setSequence("MKTAYIAKQRQISFVK...")
prot_hit.setScore(100.5)
# Add to identification
prot_id.setHits([prot_hit])
prot_id.setScoreType("Mascot Score")
prot_id.setHigherScoreBetter(True)
# Search parameters
search_params = oms.ProteinIdentification.SearchParameters()
search_params.db = "uniprot_human.fasta"
search_params.enzyme = "Trypsin"
prot_id.setSearchParameters(search_params)
ConsensusMap and ConsensusFeature
For linking features across multiple samples.
ConsensusFeature
# Create consensus feature
cons_feature = oms.ConsensusFeature()
cons_feature.setMZ(456.789)
cons_feature.setRT(123.45)
cons_feature.setIntensity(5000000) # Combined intensity
# Access linked features
for handle in cons_feature.getFeatureList():
map_index = handle.getMapIndex()
feature_index = handle.getIndex()
intensity = handle.getIntensity()
ConsensusMap
# Create consensus map
consensus_map = oms.ConsensusMap()
# Add consensus features
consensus_map.push_back(cons_feature)
# Iterate
for cons_feat in consensus_map:
mz = cons_feat.getMZ()
rt = cons_feat.getRT()
n_features = cons_feat.size() # Number of linked features
Best Practices
- Use numpy arrays for peak data when possible - much faster than individual peak access
- Sort spectra by position (m/z) before searching or filtering
- Update ranges after modifying MSExperiment:
exp.updateRanges() - Check MS level before processing - different algorithms for MS1 vs MS2
- Validate precursor info for MS2 spectra - ensure charge and m/z are set
- Use appropriate containers - MSExperiment for raw data, FeatureMap for quantification
- Clear metadata carefully - use
clear(False)to preserve metadata when clearing peaks
Common Patterns
Create MS2 Spectrum with Precursor
spectrum = oms.MSSpectrum()
spectrum.setRT(205.2)
spectrum.setMSLevel(2)
spectrum.set_peaks(([100, 200, 300], [1000, 5000, 3000]))
precursor = oms.Precursor()
precursor.setMZ(450.5)
precursor.setCharge(2)
spectrum.setPrecursors([precursor])
Extract MS1 Spectra from Experiment
ms1_exp = oms.MSExperiment()
for spectrum in exp:
if spectrum.getMSLevel() == 1:
ms1_exp.addSpectrum(spectrum)
Calculate Total Ion Current (TIC)
tic_values = []
rt_values = []
for spectrum in exp:
if spectrum.getMSLevel() == 1:
mz, intensity = spectrum.get_peaks()
tic = np.sum(intensity)
tic_values.append(tic)
rt_values.append(spectrum.getRT())
Find Spectrum Closest to RT
target_rt = 125.5
closest_spectrum = None
min_diff = float('inf')
for spectrum in exp:
diff = abs(spectrum.getRT() - target_rt)
if diff < min_diff:
min_diff = diff
closest_spectrum = spectrum