Files
claude-scientific-skills/scientific-packages/transformers/references/training.md
2025-10-21 10:30:38 -07:00

8.4 KiB

Training with Transformers

Transformers provides comprehensive training capabilities through the Trainer API, supporting distributed training, mixed precision, and advanced optimization techniques.

Basic Training Workflow

from transformers import (
    AutoModelForSequenceClassification,
    AutoTokenizer,
    Trainer,
    TrainingArguments
)
from datasets import load_dataset

# 1. Load and preprocess data
dataset = load_dataset("imdb")
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")

def tokenize_function(examples):
    return tokenizer(examples["text"], padding="max_length", truncation=True)

tokenized_datasets = dataset.map(tokenize_function, batched=True)

# 2. Load model
model = AutoModelForSequenceClassification.from_pretrained(
    "bert-base-uncased",
    num_labels=2
)

# 3. Define training arguments
training_args = TrainingArguments(
    output_dir="./results",
    num_train_epochs=3,
    per_device_train_batch_size=16,
    per_device_eval_batch_size=64,
    learning_rate=2e-5,
    eval_strategy="epoch",
    save_strategy="epoch",
    load_best_model_at_end=True,
)

# 4. Create trainer
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=tokenized_datasets["train"],
    eval_dataset=tokenized_datasets["test"],
)

# 5. Train
trainer.train()

# 6. Evaluate
trainer.evaluate()

# 7. Save model
trainer.save_model("./final_model")

TrainingArguments Configuration

Essential Parameters

Output and Logging:

  • output_dir: Directory for checkpoints and outputs (required)
  • logging_dir: TensorBoard log directory (default: {output_dir}/runs)
  • logging_steps: Log every N steps (default: 500)
  • logging_strategy: "steps" or "epoch"

Training Duration:

  • num_train_epochs: Number of epochs (default: 3.0)
  • max_steps: Max training steps (overrides num_train_epochs if set)

Batch Size and Gradient Accumulation:

  • per_device_train_batch_size: Batch size per device (default: 8)
  • per_device_eval_batch_size: Eval batch size per device (default: 8)
  • gradient_accumulation_steps: Accumulate gradients over N steps (default: 1)
  • Effective batch size = per_device_train_batch_size * gradient_accumulation_steps * num_gpus

Learning Rate:

  • learning_rate: Peak learning rate (default: 5e-5)
  • lr_scheduler_type: Scheduler type ("linear", "cosine", "constant", etc.)
  • warmup_steps: Warmup steps (default: 0)
  • warmup_ratio: Warmup as fraction of total steps

Evaluation:

  • eval_strategy: "no", "steps", or "epoch" (default: "no")
  • eval_steps: Evaluate every N steps (if eval_strategy="steps")
  • eval_delay: Delay evaluation until N steps

Checkpointing:

  • save_strategy: "no", "steps", or "epoch" (default: "steps")
  • save_steps: Save checkpoint every N steps (default: 500)
  • save_total_limit: Keep only N most recent checkpoints
  • load_best_model_at_end: Load best checkpoint at end (default: False)
  • metric_for_best_model: Metric to determine best model

Optimization:

  • optim: Optimizer ("adamw_torch", "adamw_hf", "sgd", etc.)
  • weight_decay: Weight decay coefficient (default: 0.0)
  • adam_beta1, adam_beta2: Adam optimizer betas
  • adam_epsilon: Epsilon for Adam (default: 1e-8)
  • max_grad_norm: Max gradient norm for clipping (default: 1.0)

Mixed Precision Training

training_args = TrainingArguments(
    output_dir="./results",
    fp16=True,  # Use fp16 on NVIDIA GPUs
    fp16_opt_level="O1",  # O0, O1, O2, O3 (Apex levels)
    # or
    bf16=True,  # Use bf16 on Ampere+ GPUs (better than fp16)
)

Distributed Training

DataParallel (single-node multi-GPU):

# Automatic with multiple GPUs
training_args = TrainingArguments(
    output_dir="./results",
    per_device_train_batch_size=16,  # Per GPU
)
# Run: python script.py

DistributedDataParallel (multi-node or multi-GPU):

# Single node, multiple GPUs
python -m torch.distributed.launch --nproc_per_node=4 script.py

# Or use accelerate
accelerate config
accelerate launch script.py

DeepSpeed Integration:

training_args = TrainingArguments(
    output_dir="./results",
    deepspeed="ds_config.json",  # DeepSpeed config file
)

Advanced Features

Gradient Checkpointing (reduce memory):

training_args = TrainingArguments(
    output_dir="./results",
    gradient_checkpointing=True,
)

Compilation with torch.compile:

training_args = TrainingArguments(
    output_dir="./results",
    torch_compile=True,
    torch_compile_backend="inductor",  # or "cudagraphs"
)

Push to Hub:

training_args = TrainingArguments(
    output_dir="./results",
    push_to_hub=True,
    hub_model_id="username/model-name",
    hub_strategy="every_save",  # or "end"
)

Custom Training Components

Custom Metrics

import evaluate
import numpy as np

metric = evaluate.load("accuracy")

def compute_metrics(eval_pred):
    logits, labels = eval_pred
    predictions = np.argmax(logits, axis=-1)
    return metric.compute(predictions=predictions, references=labels)

trainer = Trainer(
    model=model,
    args=training_args,
    compute_metrics=compute_metrics,
)

Custom Loss Function

class CustomTrainer(Trainer):
    def compute_loss(self, model, inputs, return_outputs=False):
        labels = inputs.pop("labels")
        outputs = model(**inputs)
        logits = outputs.logits

        # Custom loss calculation
        loss_fct = torch.nn.CrossEntropyLoss(weight=class_weights)
        loss = loss_fct(logits.view(-1, self.model.config.num_labels), labels.view(-1))

        return (loss, outputs) if return_outputs else loss

Data Collator

from transformers import DataCollatorWithPadding

data_collator = DataCollatorWithPadding(tokenizer=tokenizer)

trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=train_dataset,
    data_collator=data_collator,
)

Callbacks

from transformers import TrainerCallback

class CustomCallback(TrainerCallback):
    def on_epoch_end(self, args, state, control, **kwargs):
        print(f"Epoch {state.epoch} completed!")
        return control

trainer = Trainer(
    model=model,
    args=training_args,
    callbacks=[CustomCallback],
)
def model_init():
    return AutoModelForSequenceClassification.from_pretrained(
        "bert-base-uncased",
        num_labels=2
    )

trainer = Trainer(
    model_init=model_init,
    args=training_args,
    train_dataset=train_dataset,
    eval_dataset=eval_dataset,
    compute_metrics=compute_metrics,
)

# Optuna-based search
best_trial = trainer.hyperparameter_search(
    direction="maximize",
    backend="optuna",
    n_trials=10,
    hp_space=lambda trial: {
        "learning_rate": trial.suggest_float("learning_rate", 1e-5, 5e-5, log=True),
        "per_device_train_batch_size": trial.suggest_categorical("per_device_train_batch_size", [8, 16, 32]),
        "num_train_epochs": trial.suggest_int("num_train_epochs", 2, 5),
    }
)

Training Best Practices

  1. Start with small learning rates: 2e-5 to 5e-5 for fine-tuning
  2. Use warmup: 5-10% of total steps for learning rate warmup
  3. Monitor training: Use eval_strategy="epoch" or "steps" to track progress
  4. Save checkpoints: Set save_strategy and save_total_limit
  5. Use mixed precision: Enable fp16 or bf16 for faster training
  6. Gradient accumulation: For large effective batch sizes on limited memory
  7. Load best model: Set load_best_model_at_end=True to avoid overfitting
  8. Push to Hub: Enable push_to_hub for easy model sharing and versioning

Common Training Patterns

Classification

model = AutoModelForSequenceClassification.from_pretrained(
    "bert-base-uncased",
    num_labels=num_classes,
    id2label=id2label,
    label2id=label2id
)

Question Answering

model = AutoModelForQuestionAnswering.from_pretrained("bert-base-uncased")

Token Classification (NER)

model = AutoModelForTokenClassification.from_pretrained(
    "bert-base-uncased",
    num_labels=num_tags,
    id2label=id2label,
    label2id=label2id
)

Sequence-to-Sequence

model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")

Causal Language Modeling

model = AutoModelForCausalLM.from_pretrained("gpt2")

Masked Language Modeling

model = AutoModelForMaskedLM.from_pretrained("bert-base-uncased")