mirror of
https://github.com/K-Dense-AI/claude-scientific-skills.git
synced 2026-01-26 16:58:56 +08:00
Improve the arboreto skill
This commit is contained in:
@@ -1,415 +1,250 @@
|
|||||||
---
|
---
|
||||||
name: arboreto
|
name: arboreto
|
||||||
description: "Gene regulatory network inference with GRNBoost2/GENIE3 algorithms. Infer TF-target relationships from expression data, scalable with Dask, for scRNA-seq and GRN analysis."
|
description: Infer gene regulatory networks (GRNs) from gene expression data using scalable algorithms (GRNBoost2, GENIE3). Use when analyzing transcriptomics data (bulk RNA-seq, single-cell RNA-seq) to identify transcription factor-target gene relationships and regulatory interactions. Supports distributed computation for large-scale datasets.
|
||||||
---
|
---
|
||||||
|
|
||||||
# Arboreto - Gene Regulatory Network Inference
|
# Arboreto
|
||||||
|
|
||||||
## Overview
|
## Overview
|
||||||
|
|
||||||
Arboreto is a Python library for inferring gene regulatory networks (GRNs) from gene expression data using machine learning algorithms. It enables scalable GRN inference from single machines to multi-node clusters using Dask for distributed computing. The skill provides comprehensive support for both GRNBoost2 (fast gradient boosting) and GENIE3 (Random Forest) algorithms.
|
Arboreto is a computational library for inferring gene regulatory networks (GRNs) from gene expression data using parallelized algorithms that scale from single machines to multi-node clusters.
|
||||||
|
|
||||||
## When to Use This Skill
|
**Core capability**: Identify which transcription factors (TFs) regulate which target genes based on expression patterns across observations (cells, samples, conditions).
|
||||||
|
|
||||||
This skill should be used when:
|
## Quick Start
|
||||||
- Inferring regulatory relationships between genes from expression data
|
|
||||||
- Analyzing single-cell or bulk RNA-seq data to identify transcription factor targets
|
Install arboreto:
|
||||||
- Building the GRN inference component of a pySCENIC pipeline
|
```bash
|
||||||
- Comparing GRNBoost2 and GENIE3 algorithm performance
|
pip install arboreto
|
||||||
- Setting up distributed computing for large-scale genomic analyses
|
```
|
||||||
- Troubleshooting arboreto installation or runtime issues
|
|
||||||
|
Basic GRN inference:
|
||||||
|
```python
|
||||||
|
import pandas as pd
|
||||||
|
from arboreto.algo import grnboost2
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
# Load expression data (genes as columns)
|
||||||
|
expression_matrix = pd.read_csv('expression_data.tsv', sep='\t')
|
||||||
|
|
||||||
|
# Infer regulatory network
|
||||||
|
network = grnboost2(expression_data=expression_matrix)
|
||||||
|
|
||||||
|
# Save results (TF, target, importance)
|
||||||
|
network.to_csv('network.tsv', sep='\t', index=False, header=False)
|
||||||
|
```
|
||||||
|
|
||||||
|
**Critical**: Always use `if __name__ == '__main__':` guard because Dask spawns new processes.
|
||||||
|
|
||||||
## Core Capabilities
|
## Core Capabilities
|
||||||
|
|
||||||
### 1. Basic GRN Inference
|
### 1. Basic GRN Inference
|
||||||
|
|
||||||
For standard gene regulatory network inference tasks:
|
For standard GRN inference workflows including:
|
||||||
|
- Input data preparation (Pandas DataFrame or NumPy array)
|
||||||
|
- Running inference with GRNBoost2 or GENIE3
|
||||||
|
- Filtering by transcription factors
|
||||||
|
- Output format and interpretation
|
||||||
|
|
||||||
**Key considerations:**
|
**See**: `references/basic_inference.md`
|
||||||
- Expression data format: Rows = observations (cells/samples), Columns = genes
|
|
||||||
- If data has genes as rows, transpose it first: `expression_df.T`
|
|
||||||
- Always include `seed` parameter for reproducible results
|
|
||||||
- Transcription factor list is optional but recommended for focused analysis
|
|
||||||
|
|
||||||
**Typical workflow:**
|
**Use the ready-to-run script**: `scripts/basic_grn_inference.py` for standard inference tasks:
|
||||||
```python
|
```bash
|
||||||
import pandas as pd
|
python scripts/basic_grn_inference.py expression_data.tsv output_network.tsv --tf-file tfs.txt --seed 777
|
||||||
from arboreto.algo import grnboost2
|
|
||||||
from arboreto.utils import load_tf_names
|
|
||||||
|
|
||||||
# Load expression data (ensure correct orientation)
|
|
||||||
expression_data = pd.read_csv('expression_data.tsv', sep='\t', index_col=0)
|
|
||||||
|
|
||||||
# Optional: Load TF names
|
|
||||||
tf_names = load_tf_names('transcription_factors.txt')
|
|
||||||
|
|
||||||
# Run inference
|
|
||||||
network = grnboost2(
|
|
||||||
expression_data=expression_data,
|
|
||||||
tf_names=tf_names,
|
|
||||||
seed=42 # For reproducibility
|
|
||||||
)
|
|
||||||
|
|
||||||
# Save results
|
|
||||||
network.to_csv('network_output.tsv', sep='\t', index=False)
|
|
||||||
```
|
|
||||||
|
|
||||||
**Output format:**
|
|
||||||
- DataFrame with columns: `['TF', 'target', 'importance']`
|
|
||||||
- Higher importance scores indicate stronger predicted regulatory relationships
|
|
||||||
- Typically sorted by importance (descending)
|
|
||||||
|
|
||||||
**Multiprocessing requirement:**
|
|
||||||
All arboreto code must include `if __name__ == '__main__':` protection due to Dask's multiprocessing requirements:
|
|
||||||
|
|
||||||
```python
|
|
||||||
if __name__ == '__main__':
|
|
||||||
# Arboreto code goes here
|
|
||||||
network = grnboost2(expression_data=expr_data, seed=42)
|
|
||||||
```
|
```
|
||||||
|
|
||||||
### 2. Algorithm Selection
|
### 2. Algorithm Selection
|
||||||
|
|
||||||
**GRNBoost2 (Recommended for most cases):**
|
Arboreto provides two algorithms:
|
||||||
- ~10-100x faster than GENIE3
|
|
||||||
- Uses stochastic gradient boosting with early-stopping
|
|
||||||
- Best for: Large datasets (>10k observations), time-sensitive analyses
|
|
||||||
- Function: `arboreto.algo.grnboost2()`
|
|
||||||
|
|
||||||
**GENIE3:**
|
**GRNBoost2 (Recommended)**:
|
||||||
- Uses Random Forest regression
|
- Fast gradient boosting-based inference
|
||||||
- More established, classical approach
|
- Optimized for large datasets (10k+ observations)
|
||||||
- Best for: Small datasets, methodological comparisons, reproducing published results
|
- Default choice for most analyses
|
||||||
- Function: `arboreto.algo.genie3()`
|
|
||||||
|
|
||||||
**When to compare both algorithms:**
|
**GENIE3**:
|
||||||
Use the provided `compare_algorithms.py` script when:
|
- Random Forest-based inference
|
||||||
- Validating results for critical analyses
|
- Original multiple regression approach
|
||||||
- Benchmarking performance on new datasets
|
- Use for comparison or validation
|
||||||
- Publishing research requiring methodological comparisons
|
|
||||||
|
Quick comparison:
|
||||||
|
```python
|
||||||
|
from arboreto.algo import grnboost2, genie3
|
||||||
|
|
||||||
|
# Fast, recommended
|
||||||
|
network_grnboost = grnboost2(expression_data=matrix)
|
||||||
|
|
||||||
|
# Classic algorithm
|
||||||
|
network_genie3 = genie3(expression_data=matrix)
|
||||||
|
```
|
||||||
|
|
||||||
|
**For detailed algorithm comparison, parameters, and selection guidance**: `references/algorithms.md`
|
||||||
|
|
||||||
### 3. Distributed Computing
|
### 3. Distributed Computing
|
||||||
|
|
||||||
**Local execution (default):**
|
Scale inference from local multi-core to cluster environments:
|
||||||
Arboreto automatically creates a local Dask client. No configuration needed:
|
|
||||||
|
**Local (default)** - Uses all available cores automatically:
|
||||||
```python
|
```python
|
||||||
network = grnboost2(expression_data=expr_data)
|
network = grnboost2(expression_data=matrix)
|
||||||
```
|
```
|
||||||
|
|
||||||
**Custom local cluster (recommended for better control):**
|
**Custom local client** - Control resources:
|
||||||
```python
|
```python
|
||||||
from dask.distributed import Client, LocalCluster
|
from distributed import LocalCluster, Client
|
||||||
|
|
||||||
# Configure cluster
|
local_cluster = LocalCluster(n_workers=10, memory_limit='8GB')
|
||||||
cluster = LocalCluster(
|
client = Client(local_cluster)
|
||||||
n_workers=4,
|
|
||||||
threads_per_worker=2,
|
|
||||||
memory_limit='4GB',
|
|
||||||
diagnostics_port=8787 # Dashboard at http://localhost:8787
|
|
||||||
)
|
|
||||||
client = Client(cluster)
|
|
||||||
|
|
||||||
# Run inference
|
network = grnboost2(expression_data=matrix, client_or_address=client)
|
||||||
network = grnboost2(
|
|
||||||
expression_data=expr_data,
|
|
||||||
client_or_address=client
|
|
||||||
)
|
|
||||||
|
|
||||||
# Clean up
|
|
||||||
client.close()
|
client.close()
|
||||||
cluster.close()
|
local_cluster.close()
|
||||||
```
|
```
|
||||||
|
|
||||||
**Distributed cluster (multi-node):**
|
**Cluster computing** - Connect to remote Dask scheduler:
|
||||||
On scheduler node:
|
|
||||||
```bash
|
|
||||||
dask-scheduler --no-bokeh
|
|
||||||
```
|
|
||||||
|
|
||||||
On worker nodes:
|
|
||||||
```bash
|
|
||||||
dask-worker scheduler-address:8786 --local-dir /tmp
|
|
||||||
```
|
|
||||||
|
|
||||||
In Python:
|
|
||||||
```python
|
```python
|
||||||
from dask.distributed import Client
|
from distributed import Client
|
||||||
|
|
||||||
client = Client('scheduler-address:8786')
|
client = Client('tcp://scheduler:8786')
|
||||||
network = grnboost2(expression_data=expr_data, client_or_address=client)
|
network = grnboost2(expression_data=matrix, client_or_address=client)
|
||||||
```
|
```
|
||||||
|
|
||||||
### 4. Data Preparation
|
**For cluster setup, performance optimization, and large-scale workflows**: `references/distributed_computing.md`
|
||||||
|
|
||||||
**Common data format issues:**
|
|
||||||
|
|
||||||
1. **Transposed data** (genes as rows instead of columns):
|
|
||||||
```python
|
|
||||||
# If genes are rows, transpose
|
|
||||||
expression_data = pd.read_csv('data.tsv', sep='\t', index_col=0).T
|
|
||||||
```
|
|
||||||
|
|
||||||
2. **Missing gene names:**
|
|
||||||
```python
|
|
||||||
# Provide gene names if using numpy array
|
|
||||||
network = grnboost2(
|
|
||||||
expression_data=expr_array,
|
|
||||||
gene_names=['Gene1', 'Gene2', 'Gene3', ...],
|
|
||||||
seed=42
|
|
||||||
)
|
|
||||||
```
|
|
||||||
|
|
||||||
3. **Transcription factor specification:**
|
|
||||||
```python
|
|
||||||
# Option 1: Python list
|
|
||||||
tf_names = ['Sox2', 'Oct4', 'Nanog', 'Klf4']
|
|
||||||
|
|
||||||
# Option 2: Load from file (one TF per line)
|
|
||||||
from arboreto.utils import load_tf_names
|
|
||||||
tf_names = load_tf_names('tf_names.txt')
|
|
||||||
```
|
|
||||||
|
|
||||||
### 5. Reproducibility
|
|
||||||
|
|
||||||
Always specify a seed for consistent results:
|
|
||||||
```python
|
|
||||||
network = grnboost2(expression_data=expr_data, seed=42)
|
|
||||||
```
|
|
||||||
|
|
||||||
Without a seed, results will vary between runs due to algorithm randomness.
|
|
||||||
|
|
||||||
### 6. Result Interpretation
|
|
||||||
|
|
||||||
**Understanding the output:**
|
|
||||||
- `TF`: Transcription factor (regulator) gene
|
|
||||||
- `target`: Target gene being regulated
|
|
||||||
- `importance`: Strength of predicted regulatory relationship
|
|
||||||
|
|
||||||
**Typical post-processing:**
|
|
||||||
```python
|
|
||||||
# Filter by importance threshold
|
|
||||||
high_confidence = network[network['importance'] > 10]
|
|
||||||
|
|
||||||
# Get top N predictions
|
|
||||||
top_predictions = network.head(1000)
|
|
||||||
|
|
||||||
# Find all targets of a specific TF
|
|
||||||
sox2_targets = network[network['TF'] == 'Sox2']
|
|
||||||
|
|
||||||
# Count regulations per TF
|
|
||||||
tf_counts = network['TF'].value_counts()
|
|
||||||
```
|
|
||||||
|
|
||||||
## Installation
|
## Installation
|
||||||
|
|
||||||
**Recommended (via conda):**
|
**Recommended (Conda)**:
|
||||||
```bash
|
```bash
|
||||||
conda install -c bioconda arboreto
|
conda install -c bioconda arboreto
|
||||||
```
|
```
|
||||||
|
|
||||||
**Via pip:**
|
**Alternative (pip)**:
|
||||||
```bash
|
```bash
|
||||||
pip install arboreto
|
pip install arboreto
|
||||||
```
|
```
|
||||||
|
|
||||||
**From source:**
|
**For isolated environment**:
|
||||||
```bash
|
|
||||||
git clone https://github.com/tmoerman/arboreto.git
|
|
||||||
cd arboreto
|
|
||||||
pip install .
|
|
||||||
```
|
|
||||||
|
|
||||||
**Dependencies:**
|
|
||||||
- pandas
|
|
||||||
- numpy
|
|
||||||
- scikit-learn
|
|
||||||
- scipy
|
|
||||||
- dask
|
|
||||||
- distributed
|
|
||||||
|
|
||||||
## Troubleshooting
|
|
||||||
|
|
||||||
### Issue: Bokeh error when launching Dask scheduler
|
|
||||||
|
|
||||||
**Error:** `TypeError: got an unexpected keyword argument 'host'`
|
|
||||||
|
|
||||||
**Solutions:**
|
|
||||||
- Use `dask-scheduler --no-bokeh` to disable Bokeh
|
|
||||||
- Upgrade to Dask distributed >= 0.20.0
|
|
||||||
|
|
||||||
### Issue: Workers not connecting to scheduler
|
|
||||||
|
|
||||||
**Symptoms:** Worker processes start but fail to establish connections
|
|
||||||
|
|
||||||
**Solutions:**
|
|
||||||
- Remove `dask-worker-space` directory before restarting workers
|
|
||||||
- Specify adequate `local_dir` when creating cluster:
|
|
||||||
```python
|
|
||||||
cluster = LocalCluster(
|
|
||||||
worker_kwargs={'local_dir': '/tmp'}
|
|
||||||
)
|
|
||||||
```
|
|
||||||
|
|
||||||
### Issue: Memory errors with large datasets
|
|
||||||
|
|
||||||
**Solutions:**
|
|
||||||
- Increase worker memory limits: `memory_limit='8GB'`
|
|
||||||
- Distribute across more nodes
|
|
||||||
- Reduce dataset size through preprocessing (e.g., feature selection)
|
|
||||||
- Ensure expression matrix fits in available RAM
|
|
||||||
|
|
||||||
### Issue: Inconsistent results across runs
|
|
||||||
|
|
||||||
**Solution:** Always specify a `seed` parameter:
|
|
||||||
```python
|
|
||||||
network = grnboost2(expression_data=expr_data, seed=42)
|
|
||||||
```
|
|
||||||
|
|
||||||
### Issue: Import errors or missing dependencies
|
|
||||||
|
|
||||||
**Solution:** Use conda installation to handle numerical library dependencies:
|
|
||||||
```bash
|
```bash
|
||||||
conda create --name arboreto-env
|
conda create --name arboreto-env
|
||||||
conda activate arboreto-env
|
conda activate arboreto-env
|
||||||
conda install -c bioconda arboreto
|
conda install -c bioconda arboreto
|
||||||
```
|
```
|
||||||
|
|
||||||
## Provided Scripts
|
**Dependencies**: scipy, scikit-learn, numpy, pandas, dask, distributed
|
||||||
|
|
||||||
This skill includes ready-to-use scripts for common workflows:
|
## Common Use Cases
|
||||||
|
|
||||||
### scripts/basic_grn_inference.py
|
### Single-Cell RNA-seq Analysis
|
||||||
|
```python
|
||||||
|
import pandas as pd
|
||||||
|
from arboreto.algo import grnboost2
|
||||||
|
|
||||||
Command-line tool for standard GRN inference workflow.
|
if __name__ == '__main__':
|
||||||
|
# Load single-cell expression matrix (cells x genes)
|
||||||
|
sc_data = pd.read_csv('scrna_counts.tsv', sep='\t')
|
||||||
|
|
||||||
**Usage:**
|
# Infer cell-type-specific regulatory network
|
||||||
```bash
|
network = grnboost2(expression_data=sc_data, seed=42)
|
||||||
python scripts/basic_grn_inference.py expression_data.tsv \
|
|
||||||
-t tf_names.txt \
|
# Filter high-confidence links
|
||||||
-o network.tsv \
|
high_confidence = network[network['importance'] > 0.5]
|
||||||
-s 42 \
|
high_confidence.to_csv('grn_high_confidence.tsv', sep='\t', index=False)
|
||||||
--transpose # if genes are rows
|
|
||||||
```
|
```
|
||||||
|
|
||||||
**Features:**
|
### Bulk RNA-seq with TF Filtering
|
||||||
- Automatic data loading and validation
|
```python
|
||||||
- Optional TF list specification
|
from arboreto.utils import load_tf_names
|
||||||
- Configurable output format
|
from arboreto.algo import grnboost2
|
||||||
- Data transposition support
|
|
||||||
- Summary statistics
|
|
||||||
|
|
||||||
### scripts/distributed_inference.py
|
if __name__ == '__main__':
|
||||||
|
# Load data
|
||||||
|
expression_data = pd.read_csv('rnaseq_tpm.tsv', sep='\t')
|
||||||
|
tf_names = load_tf_names('human_tfs.txt')
|
||||||
|
|
||||||
GRN inference with custom Dask cluster configuration.
|
# Infer with TF restriction
|
||||||
|
network = grnboost2(
|
||||||
|
expression_data=expression_data,
|
||||||
|
tf_names=tf_names,
|
||||||
|
seed=123
|
||||||
|
)
|
||||||
|
|
||||||
**Usage:**
|
network.to_csv('tf_target_network.tsv', sep='\t', index=False)
|
||||||
```bash
|
|
||||||
python scripts/distributed_inference.py expression_data.tsv \
|
|
||||||
-t tf_names.txt \
|
|
||||||
-w 8 \
|
|
||||||
-m 4GB \
|
|
||||||
--threads 2 \
|
|
||||||
--dashboard-port 8787
|
|
||||||
```
|
```
|
||||||
|
|
||||||
**Features:**
|
### Comparative Analysis (Multiple Conditions)
|
||||||
- Configurable worker count and memory limits
|
```python
|
||||||
- Dask dashboard integration
|
from arboreto.algo import grnboost2
|
||||||
- Thread configuration
|
|
||||||
- Resource monitoring
|
|
||||||
|
|
||||||
### scripts/compare_algorithms.py
|
if __name__ == '__main__':
|
||||||
|
# Infer networks for different conditions
|
||||||
|
conditions = ['control', 'treatment_24h', 'treatment_48h']
|
||||||
|
|
||||||
Compare GRNBoost2 and GENIE3 side-by-side.
|
for condition in conditions:
|
||||||
|
data = pd.read_csv(f'{condition}_expression.tsv', sep='\t')
|
||||||
**Usage:**
|
network = grnboost2(expression_data=data, seed=42)
|
||||||
```bash
|
network.to_csv(f'{condition}_network.tsv', sep='\t', index=False)
|
||||||
python scripts/compare_algorithms.py expression_data.tsv \
|
|
||||||
-t tf_names.txt \
|
|
||||||
--top-n 100
|
|
||||||
```
|
```
|
||||||
|
|
||||||
**Features:**
|
## Output Interpretation
|
||||||
- Runtime comparison
|
|
||||||
- Network statistics
|
|
||||||
- Prediction overlap analysis
|
|
||||||
- Top prediction comparison
|
|
||||||
|
|
||||||
## Reference Documentation
|
Arboreto returns a DataFrame with regulatory links:
|
||||||
|
|
||||||
Detailed API documentation is available in [references/api_reference.md](references/api_reference.md), including:
|
| Column | Description |
|
||||||
- Complete parameter descriptions for all functions
|
|--------|-------------|
|
||||||
- Data format specifications
|
| `TF` | Transcription factor (regulator) |
|
||||||
- Distributed computing configuration
|
| `target` | Target gene |
|
||||||
- Performance optimization tips
|
| `importance` | Regulatory importance score (higher = stronger) |
|
||||||
- Integration with pySCENIC
|
|
||||||
- Comprehensive examples
|
|
||||||
|
|
||||||
Load this reference when:
|
**Filtering strategy**:
|
||||||
- Working with advanced Dask configurations
|
- Top N links per target gene
|
||||||
- Troubleshooting complex deployment scenarios
|
- Importance threshold (e.g., > 0.5)
|
||||||
- Understanding algorithm internals
|
- Statistical significance testing (permutation tests)
|
||||||
- Optimizing performance for specific use cases
|
|
||||||
|
|
||||||
## Integration with pySCENIC
|
## Integration with pySCENIC
|
||||||
|
|
||||||
Arboreto is the first step in the pySCENIC single-cell analysis pipeline:
|
Arboreto is a core component of the SCENIC pipeline for single-cell regulatory network analysis:
|
||||||
|
|
||||||
1. **GRN Inference (arboreto)** ← This skill
|
|
||||||
- Input: Expression matrix
|
|
||||||
- Output: Regulatory network
|
|
||||||
|
|
||||||
2. **Regulon Prediction (pySCENIC)**
|
|
||||||
- Input: Network from arboreto
|
|
||||||
- Output: Refined regulons
|
|
||||||
|
|
||||||
3. **Cell Type Identification (pySCENIC)**
|
|
||||||
- Input: Regulons
|
|
||||||
- Output: Cell type scores
|
|
||||||
|
|
||||||
When working with pySCENIC, use arboreto to generate the initial network, then pass results to the pySCENIC pipeline.
|
|
||||||
|
|
||||||
## Best Practices
|
|
||||||
|
|
||||||
1. **Always use seed parameter** for reproducible research
|
|
||||||
2. **Validate data orientation** (rows = observations, columns = genes)
|
|
||||||
3. **Specify TF list** when known to focus inference and improve speed
|
|
||||||
4. **Monitor with Dask dashboard** for distributed computing
|
|
||||||
5. **Save intermediate results** to avoid re-running long computations
|
|
||||||
6. **Filter results** by importance threshold for downstream analysis
|
|
||||||
7. **Use GRNBoost2 by default** unless specifically requiring GENIE3
|
|
||||||
8. **Include multiprocessing guard** (`if __name__ == '__main__':`) in all scripts
|
|
||||||
|
|
||||||
## Quick Reference
|
|
||||||
|
|
||||||
**Basic inference:**
|
|
||||||
```python
|
```python
|
||||||
|
# Step 1: Use arboreto for GRN inference
|
||||||
from arboreto.algo import grnboost2
|
from arboreto.algo import grnboost2
|
||||||
network = grnboost2(expression_data=expr_df, seed=42)
|
network = grnboost2(expression_data=sc_data, tf_names=tf_list)
|
||||||
|
|
||||||
|
# Step 2: Use pySCENIC for regulon identification and activity scoring
|
||||||
|
# (See pySCENIC documentation for downstream analysis)
|
||||||
```
|
```
|
||||||
|
|
||||||
**With TF specification:**
|
## Reproducibility
|
||||||
|
|
||||||
|
Always set a seed for reproducible results:
|
||||||
```python
|
```python
|
||||||
network = grnboost2(expression_data=expr_df, tf_names=tf_list, seed=42)
|
network = grnboost2(expression_data=matrix, seed=777)
|
||||||
```
|
```
|
||||||
|
|
||||||
**With custom Dask client:**
|
Run multiple seeds for robustness analysis:
|
||||||
```python
|
```python
|
||||||
from dask.distributed import Client, LocalCluster
|
from distributed import LocalCluster, Client
|
||||||
cluster = LocalCluster(n_workers=4)
|
|
||||||
client = Client(cluster)
|
if __name__ == '__main__':
|
||||||
network = grnboost2(expression_data=expr_df, client_or_address=client, seed=42)
|
client = Client(LocalCluster())
|
||||||
client.close()
|
|
||||||
cluster.close()
|
seeds = [42, 123, 777]
|
||||||
|
networks = []
|
||||||
|
|
||||||
|
for seed in seeds:
|
||||||
|
net = grnboost2(expression_data=matrix, client_or_address=client, seed=seed)
|
||||||
|
networks.append(net)
|
||||||
|
|
||||||
|
# Combine networks and filter consensus links
|
||||||
|
consensus = analyze_consensus(networks)
|
||||||
```
|
```
|
||||||
|
|
||||||
**Load TF names:**
|
## Troubleshooting
|
||||||
```python
|
|
||||||
from arboreto.utils import load_tf_names
|
|
||||||
tf_names = load_tf_names('transcription_factors.txt')
|
|
||||||
```
|
|
||||||
|
|
||||||
**Transpose data:**
|
**Memory errors**: Reduce dataset size by filtering low-variance genes or use distributed computing
|
||||||
```python
|
|
||||||
expression_df = pd.read_csv('data.tsv', sep='\t', index_col=0).T
|
**Slow performance**: Use GRNBoost2 instead of GENIE3, enable distributed client, filter TF list
|
||||||
```
|
|
||||||
|
**Dask errors**: Ensure `if __name__ == '__main__':` guard is present in scripts
|
||||||
|
|
||||||
|
**Empty results**: Check data format (genes as columns), verify TF names match gene names
|
||||||
|
|||||||
138
scientific-packages/arboreto/references/algorithms.md
Normal file
138
scientific-packages/arboreto/references/algorithms.md
Normal file
@@ -0,0 +1,138 @@
|
|||||||
|
# GRN Inference Algorithms
|
||||||
|
|
||||||
|
Arboreto provides two algorithms for gene regulatory network (GRN) inference, both based on the multiple regression approach.
|
||||||
|
|
||||||
|
## Algorithm Overview
|
||||||
|
|
||||||
|
Both algorithms follow the same inference strategy:
|
||||||
|
1. For each target gene in the dataset, train a regression model
|
||||||
|
2. Identify the most important features (potential regulators) from the model
|
||||||
|
3. Emit these features as candidate regulators with importance scores
|
||||||
|
|
||||||
|
The key difference is **computational efficiency** and the underlying regression method.
|
||||||
|
|
||||||
|
## GRNBoost2 (Recommended)
|
||||||
|
|
||||||
|
**Purpose**: Fast GRN inference for large-scale datasets using gradient boosting.
|
||||||
|
|
||||||
|
### When to Use
|
||||||
|
- **Large datasets**: Tens of thousands of observations (e.g., single-cell RNA-seq)
|
||||||
|
- **Time-constrained analysis**: Need faster results than GENIE3
|
||||||
|
- **Default choice**: GRNBoost2 is the flagship algorithm and recommended for most use cases
|
||||||
|
|
||||||
|
### Technical Details
|
||||||
|
- **Method**: Stochastic gradient boosting with early-stopping regularization
|
||||||
|
- **Performance**: Significantly faster than GENIE3 on large datasets
|
||||||
|
- **Output**: Same format as GENIE3 (TF-target-importance triplets)
|
||||||
|
|
||||||
|
### Usage
|
||||||
|
```python
|
||||||
|
from arboreto.algo import grnboost2
|
||||||
|
|
||||||
|
network = grnboost2(
|
||||||
|
expression_data=expression_matrix,
|
||||||
|
tf_names=tf_names,
|
||||||
|
seed=42 # For reproducibility
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
### Parameters
|
||||||
|
```python
|
||||||
|
grnboost2(
|
||||||
|
expression_data, # Required: pandas DataFrame or numpy array
|
||||||
|
gene_names=None, # Required for numpy arrays
|
||||||
|
tf_names='all', # List of TF names or 'all'
|
||||||
|
verbose=False, # Print progress messages
|
||||||
|
client_or_address='local', # Dask client or scheduler address
|
||||||
|
seed=None # Random seed for reproducibility
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
## GENIE3
|
||||||
|
|
||||||
|
**Purpose**: Classic Random Forest-based GRN inference, serving as the conceptual blueprint.
|
||||||
|
|
||||||
|
### When to Use
|
||||||
|
- **Smaller datasets**: When dataset size allows for longer computation
|
||||||
|
- **Comparison studies**: When comparing with published GENIE3 results
|
||||||
|
- **Validation**: To validate GRNBoost2 results
|
||||||
|
|
||||||
|
### Technical Details
|
||||||
|
- **Method**: Random Forest or ExtraTrees regression
|
||||||
|
- **Foundation**: Original multiple regression GRN inference strategy
|
||||||
|
- **Trade-off**: More computationally expensive but well-established
|
||||||
|
|
||||||
|
### Usage
|
||||||
|
```python
|
||||||
|
from arboreto.algo import genie3
|
||||||
|
|
||||||
|
network = genie3(
|
||||||
|
expression_data=expression_matrix,
|
||||||
|
tf_names=tf_names,
|
||||||
|
seed=42
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
### Parameters
|
||||||
|
```python
|
||||||
|
genie3(
|
||||||
|
expression_data, # Required: pandas DataFrame or numpy array
|
||||||
|
gene_names=None, # Required for numpy arrays
|
||||||
|
tf_names='all', # List of TF names or 'all'
|
||||||
|
verbose=False, # Print progress messages
|
||||||
|
client_or_address='local', # Dask client or scheduler address
|
||||||
|
seed=None # Random seed for reproducibility
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
## Algorithm Comparison
|
||||||
|
|
||||||
|
| Feature | GRNBoost2 | GENIE3 |
|
||||||
|
|---------|-----------|--------|
|
||||||
|
| **Speed** | Fast (optimized for large data) | Slower |
|
||||||
|
| **Method** | Gradient boosting | Random Forest |
|
||||||
|
| **Best for** | Large-scale data (10k+ observations) | Small-medium datasets |
|
||||||
|
| **Output format** | Same | Same |
|
||||||
|
| **Inference strategy** | Multiple regression | Multiple regression |
|
||||||
|
| **Recommended** | Yes (default choice) | For comparison/validation |
|
||||||
|
|
||||||
|
## Advanced: Custom Regressor Parameters
|
||||||
|
|
||||||
|
For advanced users, pass custom scikit-learn regressor parameters:
|
||||||
|
|
||||||
|
```python
|
||||||
|
from sklearn.ensemble import GradientBoostingRegressor, RandomForestRegressor
|
||||||
|
|
||||||
|
# Custom GRNBoost2 parameters
|
||||||
|
custom_grnboost2 = grnboost2(
|
||||||
|
expression_data=expression_matrix,
|
||||||
|
regressor_type='GBM',
|
||||||
|
regressor_kwargs={
|
||||||
|
'n_estimators': 100,
|
||||||
|
'max_depth': 5,
|
||||||
|
'learning_rate': 0.1
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
# Custom GENIE3 parameters
|
||||||
|
custom_genie3 = genie3(
|
||||||
|
expression_data=expression_matrix,
|
||||||
|
regressor_type='RF',
|
||||||
|
regressor_kwargs={
|
||||||
|
'n_estimators': 1000,
|
||||||
|
'max_features': 'sqrt'
|
||||||
|
}
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
## Choosing the Right Algorithm
|
||||||
|
|
||||||
|
**Decision guide**:
|
||||||
|
|
||||||
|
1. **Start with GRNBoost2** - It's faster and handles large datasets better
|
||||||
|
2. **Use GENIE3 if**:
|
||||||
|
- Comparing with existing GENIE3 publications
|
||||||
|
- Dataset is small-medium sized
|
||||||
|
- Validating GRNBoost2 results
|
||||||
|
|
||||||
|
Both algorithms produce comparable regulatory networks with the same output format, making them interchangeable for most analyses.
|
||||||
@@ -1,271 +0,0 @@
|
|||||||
# Arboreto API Reference
|
|
||||||
|
|
||||||
This document provides comprehensive API documentation for the arboreto package, a Python library for gene regulatory network (GRN) inference.
|
|
||||||
|
|
||||||
## Overview
|
|
||||||
|
|
||||||
Arboreto enables inference of gene regulatory networks from expression data using machine learning algorithms. It supports distributed computing via Dask for scalability from single machines to multi-node clusters.
|
|
||||||
|
|
||||||
**Current Version:** 0.1.5
|
|
||||||
**GitHub:** https://github.com/tmoerman/arboreto
|
|
||||||
**License:** BSD 3-Clause
|
|
||||||
|
|
||||||
## Core Algorithms
|
|
||||||
|
|
||||||
### GRNBoost2
|
|
||||||
|
|
||||||
The flagship algorithm for fast gene regulatory network inference using stochastic gradient boosting.
|
|
||||||
|
|
||||||
**Function:** `arboreto.algo.grnboost2()`
|
|
||||||
|
|
||||||
**Parameters:**
|
|
||||||
- `expression_data` (pandas.DataFrame or numpy.ndarray): Expression matrix where rows are observations (cells/samples) and columns are genes. Required.
|
|
||||||
- `gene_names` (list, optional): List of gene names matching column order. If None, uses DataFrame column names.
|
|
||||||
- `tf_names` (list, optional): List of transcription factor names to consider as regulators. If None, all genes are considered potential regulators.
|
|
||||||
- `seed` (int, optional): Random seed for reproducibility. Recommended when consistent results are needed across runs.
|
|
||||||
- `client_or_address` (dask.distributed.Client or str, optional): Custom Dask client or scheduler address for distributed computing. If None, creates a default local client.
|
|
||||||
- `verbose` (bool, optional): Enable verbose output for debugging.
|
|
||||||
|
|
||||||
**Returns:**
|
|
||||||
- pandas.DataFrame with columns `['TF', 'target', 'importance']` representing inferred regulatory links. Each row represents a regulatory relationship with an importance score.
|
|
||||||
|
|
||||||
**Algorithm Details:**
|
|
||||||
- Uses stochastic gradient boosting with early-stopping regularization
|
|
||||||
- Much faster than GENIE3, especially for large datasets (tens of thousands of observations)
|
|
||||||
- Extracts important features from trained regression models to identify regulatory relationships
|
|
||||||
- Recommended as the default choice for most use cases
|
|
||||||
|
|
||||||
**Example:**
|
|
||||||
```python
|
|
||||||
from arboreto.algo import grnboost2
|
|
||||||
import pandas as pd
|
|
||||||
|
|
||||||
# Load expression data
|
|
||||||
expression_matrix = pd.read_csv('expression_data.tsv', sep='\t')
|
|
||||||
tf_list = ['TF1', 'TF2', 'TF3'] # Optional: specify TFs
|
|
||||||
|
|
||||||
# Run inference
|
|
||||||
network = grnboost2(
|
|
||||||
expression_data=expression_matrix,
|
|
||||||
tf_names=tf_list,
|
|
||||||
seed=42 # For reproducibility
|
|
||||||
)
|
|
||||||
|
|
||||||
# Save results
|
|
||||||
network.to_csv('output_network.tsv', sep='\t', index=False)
|
|
||||||
```
|
|
||||||
|
|
||||||
### GENIE3
|
|
||||||
|
|
||||||
Classical gene regulatory network inference using Random Forest regression.
|
|
||||||
|
|
||||||
**Function:** `arboreto.algo.genie3()`
|
|
||||||
|
|
||||||
**Parameters:**
|
|
||||||
Same as GRNBoost2 (see above).
|
|
||||||
|
|
||||||
**Returns:**
|
|
||||||
Same format as GRNBoost2 (see above).
|
|
||||||
|
|
||||||
**Algorithm Details:**
|
|
||||||
- Uses Random Forest or ExtraTrees regression models
|
|
||||||
- Blueprint for multiple regression GRN inference strategy
|
|
||||||
- More computationally expensive than GRNBoost2
|
|
||||||
- Better suited for smaller datasets or when maximum accuracy is needed
|
|
||||||
|
|
||||||
**When to Use GENIE3 vs GRNBoost2:**
|
|
||||||
- **Use GRNBoost2:** For large datasets, faster results, or when computational resources are limited
|
|
||||||
- **Use GENIE3:** For smaller datasets, when following established protocols, or for comparison with published results
|
|
||||||
|
|
||||||
## Module Structure
|
|
||||||
|
|
||||||
### arboreto.algo
|
|
||||||
|
|
||||||
Primary module for typical users. Contains high-level inference functions.
|
|
||||||
|
|
||||||
**Main Functions:**
|
|
||||||
- `grnboost2()` - Fast GRN inference using gradient boosting
|
|
||||||
- `genie3()` - Classical GRN inference using Random Forest
|
|
||||||
|
|
||||||
### arboreto.core
|
|
||||||
|
|
||||||
Advanced module for power users. Contains low-level framework components for custom implementations.
|
|
||||||
|
|
||||||
**Use cases:**
|
|
||||||
- Custom inference pipelines
|
|
||||||
- Algorithm modifications
|
|
||||||
- Performance tuning
|
|
||||||
|
|
||||||
### arboreto.utils
|
|
||||||
|
|
||||||
Utility functions for common data processing tasks.
|
|
||||||
|
|
||||||
**Key Functions:**
|
|
||||||
- `load_tf_names(filename)` - Load transcription factor names from file
|
|
||||||
- Reads a text file with one TF name per line
|
|
||||||
- Returns a list of TF names
|
|
||||||
- Example: `tf_names = load_tf_names('transcription_factors.txt')`
|
|
||||||
|
|
||||||
## Data Format Requirements
|
|
||||||
|
|
||||||
### Input Format
|
|
||||||
|
|
||||||
**Expression Matrix:**
|
|
||||||
- **Format:** pandas DataFrame or numpy ndarray
|
|
||||||
- **Orientation:** Rows = observations (cells/samples), Columns = genes
|
|
||||||
- **Convention:** Follows scikit-learn format
|
|
||||||
- **Gene Names:** Column names (DataFrame) or separate `gene_names` parameter
|
|
||||||
- **Data Type:** Numeric (float or int)
|
|
||||||
|
|
||||||
**Common Mistake:** If data is transposed (genes as rows), use pandas to transpose:
|
|
||||||
```python
|
|
||||||
expression_df = pd.read_csv('data.tsv', sep='\t', index_col=0).T
|
|
||||||
```
|
|
||||||
|
|
||||||
**Transcription Factor List:**
|
|
||||||
- **Format:** Python list of strings or text file (one TF per line)
|
|
||||||
- **Optional:** If not provided, all genes are considered potential regulators
|
|
||||||
- **Example:** `['Sox2', 'Oct4', 'Nanog']`
|
|
||||||
|
|
||||||
### Output Format
|
|
||||||
|
|
||||||
**Network DataFrame:**
|
|
||||||
- **Columns:**
|
|
||||||
- `TF` (str): Transcription factor (regulator) gene name
|
|
||||||
- `target` (str): Target gene name
|
|
||||||
- `importance` (float): Importance score of the regulatory relationship
|
|
||||||
- **Interpretation:** Higher importance scores indicate stronger predicted regulatory relationships
|
|
||||||
- **Sorting:** Typically sorted by importance (descending) for prioritization
|
|
||||||
|
|
||||||
**Example Output:**
|
|
||||||
```
|
|
||||||
TF target importance
|
|
||||||
Sox2 Gene1 15.234
|
|
||||||
Oct4 Gene1 12.456
|
|
||||||
Sox2 Gene2 8.901
|
|
||||||
```
|
|
||||||
|
|
||||||
## Distributed Computing with Dask
|
|
||||||
|
|
||||||
### Local Execution (Default)
|
|
||||||
|
|
||||||
Arboreto automatically creates a local Dask client if none is provided:
|
|
||||||
|
|
||||||
```python
|
|
||||||
network = grnboost2(expression_data=expr_matrix, tf_names=tf_list)
|
|
||||||
```
|
|
||||||
|
|
||||||
### Custom Local Cluster
|
|
||||||
|
|
||||||
For better control over resources or multiple inferences:
|
|
||||||
|
|
||||||
```python
|
|
||||||
from dask.distributed import Client, LocalCluster
|
|
||||||
|
|
||||||
# Configure cluster
|
|
||||||
cluster = LocalCluster(
|
|
||||||
n_workers=4,
|
|
||||||
threads_per_worker=2,
|
|
||||||
memory_limit='4GB'
|
|
||||||
)
|
|
||||||
client = Client(cluster)
|
|
||||||
|
|
||||||
# Run inference
|
|
||||||
network = grnboost2(
|
|
||||||
expression_data=expr_matrix,
|
|
||||||
tf_names=tf_list,
|
|
||||||
client_or_address=client
|
|
||||||
)
|
|
||||||
|
|
||||||
# Clean up
|
|
||||||
client.close()
|
|
||||||
cluster.close()
|
|
||||||
```
|
|
||||||
|
|
||||||
### Distributed Cluster
|
|
||||||
|
|
||||||
For multi-node computation:
|
|
||||||
|
|
||||||
**On scheduler node:**
|
|
||||||
```bash
|
|
||||||
dask-scheduler --no-bokeh # Use --no-bokeh to avoid Bokeh errors
|
|
||||||
```
|
|
||||||
|
|
||||||
**On worker nodes:**
|
|
||||||
```bash
|
|
||||||
dask-worker scheduler-address:8786 --local-dir /tmp
|
|
||||||
```
|
|
||||||
|
|
||||||
**In Python script:**
|
|
||||||
```python
|
|
||||||
from dask.distributed import Client
|
|
||||||
|
|
||||||
client = Client('scheduler-address:8786')
|
|
||||||
network = grnboost2(
|
|
||||||
expression_data=expr_matrix,
|
|
||||||
tf_names=tf_list,
|
|
||||||
client_or_address=client
|
|
||||||
)
|
|
||||||
```
|
|
||||||
|
|
||||||
### Dask Dashboard
|
|
||||||
|
|
||||||
Monitor computation progress via the Dask dashboard:
|
|
||||||
|
|
||||||
```python
|
|
||||||
from dask.distributed import Client, LocalCluster
|
|
||||||
|
|
||||||
cluster = LocalCluster(diagnostics_port=8787)
|
|
||||||
client = Client(cluster)
|
|
||||||
|
|
||||||
# Dashboard available at: http://localhost:8787
|
|
||||||
```
|
|
||||||
|
|
||||||
## Reproducibility
|
|
||||||
|
|
||||||
To ensure reproducible results across runs:
|
|
||||||
|
|
||||||
```python
|
|
||||||
network = grnboost2(
|
|
||||||
expression_data=expr_matrix,
|
|
||||||
tf_names=tf_list,
|
|
||||||
seed=42 # Fixed seed ensures identical results
|
|
||||||
)
|
|
||||||
```
|
|
||||||
|
|
||||||
**Note:** Without a seed parameter, results may vary slightly between runs due to randomness in the algorithms.
|
|
||||||
|
|
||||||
## Performance Considerations
|
|
||||||
|
|
||||||
### Memory Management
|
|
||||||
|
|
||||||
- Expression matrices should fit in memory (RAM)
|
|
||||||
- For very large datasets, consider:
|
|
||||||
- Using a machine with more RAM
|
|
||||||
- Distributing across multiple nodes
|
|
||||||
- Preprocessing to reduce dimensionality
|
|
||||||
|
|
||||||
### Worker Configuration
|
|
||||||
|
|
||||||
- **Local execution:** Number of workers = number of CPU cores (default)
|
|
||||||
- **Custom cluster:** Balance workers and threads based on available resources
|
|
||||||
- **Distributed execution:** Ensure adequate `local_dir` space on worker nodes
|
|
||||||
|
|
||||||
### Algorithm Choice
|
|
||||||
|
|
||||||
- **GRNBoost2:** ~10-100x faster than GENIE3 for large datasets
|
|
||||||
- **GENIE3:** More established but slower, better for small datasets (<10k observations)
|
|
||||||
|
|
||||||
## Integration with pySCENIC
|
|
||||||
|
|
||||||
Arboreto is a core component of the pySCENIC pipeline for single-cell RNA sequencing analysis:
|
|
||||||
|
|
||||||
1. **GRN Inference (Arboreto):** Infer regulatory networks using GRNBoost2
|
|
||||||
2. **Regulon Prediction:** Prune network and identify regulons
|
|
||||||
3. **Cell Type Identification:** Score regulons across cells
|
|
||||||
|
|
||||||
For pySCENIC workflows, arboreto is typically used in the first step to generate the initial regulatory network.
|
|
||||||
|
|
||||||
## Common Issues and Solutions
|
|
||||||
|
|
||||||
See the main SKILL.md for troubleshooting guidance.
|
|
||||||
151
scientific-packages/arboreto/references/basic_inference.md
Normal file
151
scientific-packages/arboreto/references/basic_inference.md
Normal file
@@ -0,0 +1,151 @@
|
|||||||
|
# Basic GRN Inference with Arboreto
|
||||||
|
|
||||||
|
## Input Data Requirements
|
||||||
|
|
||||||
|
Arboreto requires gene expression data in one of two formats:
|
||||||
|
|
||||||
|
### Pandas DataFrame (Recommended)
|
||||||
|
- **Rows**: Observations (cells, samples, conditions)
|
||||||
|
- **Columns**: Genes (with gene names as column headers)
|
||||||
|
- **Format**: Numeric expression values
|
||||||
|
|
||||||
|
Example:
|
||||||
|
```python
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
# Load expression matrix with genes as columns
|
||||||
|
expression_matrix = pd.read_csv('expression_data.tsv', sep='\t')
|
||||||
|
# Columns: ['gene1', 'gene2', 'gene3', ...]
|
||||||
|
# Rows: observation data
|
||||||
|
```
|
||||||
|
|
||||||
|
### NumPy Array
|
||||||
|
- **Shape**: (observations, genes)
|
||||||
|
- **Requirement**: Separately provide gene names list matching column order
|
||||||
|
|
||||||
|
Example:
|
||||||
|
```python
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
expression_matrix = np.genfromtxt('expression_data.tsv', delimiter='\t', skip_header=1)
|
||||||
|
with open('expression_data.tsv') as f:
|
||||||
|
gene_names = [gene.strip() for gene in f.readline().split('\t')]
|
||||||
|
|
||||||
|
assert expression_matrix.shape[1] == len(gene_names)
|
||||||
|
```
|
||||||
|
|
||||||
|
## Transcription Factors (TFs)
|
||||||
|
|
||||||
|
Optionally provide a list of transcription factor names to restrict regulatory inference:
|
||||||
|
|
||||||
|
```python
|
||||||
|
from arboreto.utils import load_tf_names
|
||||||
|
|
||||||
|
# Load from file (one TF per line)
|
||||||
|
tf_names = load_tf_names('transcription_factors.txt')
|
||||||
|
|
||||||
|
# Or define directly
|
||||||
|
tf_names = ['TF1', 'TF2', 'TF3']
|
||||||
|
```
|
||||||
|
|
||||||
|
If not provided, all genes are considered potential regulators.
|
||||||
|
|
||||||
|
## Basic Inference Workflow
|
||||||
|
|
||||||
|
### Using Pandas DataFrame
|
||||||
|
|
||||||
|
```python
|
||||||
|
import pandas as pd
|
||||||
|
from arboreto.utils import load_tf_names
|
||||||
|
from arboreto.algo import grnboost2
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
# Load expression data
|
||||||
|
expression_matrix = pd.read_csv('expression_data.tsv', sep='\t')
|
||||||
|
|
||||||
|
# Load transcription factors (optional)
|
||||||
|
tf_names = load_tf_names('tf_list.txt')
|
||||||
|
|
||||||
|
# Run GRN inference
|
||||||
|
network = grnboost2(
|
||||||
|
expression_data=expression_matrix,
|
||||||
|
tf_names=tf_names # Optional
|
||||||
|
)
|
||||||
|
|
||||||
|
# Save results
|
||||||
|
network.to_csv('network_output.tsv', sep='\t', index=False, header=False)
|
||||||
|
```
|
||||||
|
|
||||||
|
**Critical**: The `if __name__ == '__main__':` guard is required because Dask spawns new processes internally.
|
||||||
|
|
||||||
|
### Using NumPy Array
|
||||||
|
|
||||||
|
```python
|
||||||
|
import numpy as np
|
||||||
|
from arboreto.algo import grnboost2
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
# Load expression matrix
|
||||||
|
expression_matrix = np.genfromtxt('expression_data.tsv', delimiter='\t', skip_header=1)
|
||||||
|
|
||||||
|
# Extract gene names from header
|
||||||
|
with open('expression_data.tsv') as f:
|
||||||
|
gene_names = [gene.strip() for gene in f.readline().split('\t')]
|
||||||
|
|
||||||
|
# Verify dimensions match
|
||||||
|
assert expression_matrix.shape[1] == len(gene_names)
|
||||||
|
|
||||||
|
# Run inference with explicit gene names
|
||||||
|
network = grnboost2(
|
||||||
|
expression_data=expression_matrix,
|
||||||
|
gene_names=gene_names,
|
||||||
|
tf_names=tf_names
|
||||||
|
)
|
||||||
|
|
||||||
|
network.to_csv('network_output.tsv', sep='\t', index=False, header=False)
|
||||||
|
```
|
||||||
|
|
||||||
|
## Output Format
|
||||||
|
|
||||||
|
Arboreto returns a Pandas DataFrame with three columns:
|
||||||
|
|
||||||
|
| Column | Description |
|
||||||
|
|--------|-------------|
|
||||||
|
| `TF` | Transcription factor (regulator) gene name |
|
||||||
|
| `target` | Target gene name |
|
||||||
|
| `importance` | Regulatory importance score (higher = stronger regulation) |
|
||||||
|
|
||||||
|
Example output:
|
||||||
|
```
|
||||||
|
TF1 gene5 0.856
|
||||||
|
TF2 gene12 0.743
|
||||||
|
TF1 gene8 0.621
|
||||||
|
```
|
||||||
|
|
||||||
|
## Setting Random Seed
|
||||||
|
|
||||||
|
For reproducible results, provide a seed parameter:
|
||||||
|
|
||||||
|
```python
|
||||||
|
network = grnboost2(
|
||||||
|
expression_data=expression_matrix,
|
||||||
|
tf_names=tf_names,
|
||||||
|
seed=777
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
## Algorithm Selection
|
||||||
|
|
||||||
|
Use `grnboost2()` for most cases (faster, handles large datasets):
|
||||||
|
```python
|
||||||
|
from arboreto.algo import grnboost2
|
||||||
|
network = grnboost2(expression_data=expression_matrix)
|
||||||
|
```
|
||||||
|
|
||||||
|
Use `genie3()` for comparison or specific requirements:
|
||||||
|
```python
|
||||||
|
from arboreto.algo import genie3
|
||||||
|
network = genie3(expression_data=expression_matrix)
|
||||||
|
```
|
||||||
|
|
||||||
|
See `references/algorithms.md` for detailed algorithm comparison.
|
||||||
242
scientific-packages/arboreto/references/distributed_computing.md
Normal file
242
scientific-packages/arboreto/references/distributed_computing.md
Normal file
@@ -0,0 +1,242 @@
|
|||||||
|
# Distributed Computing with Arboreto
|
||||||
|
|
||||||
|
Arboreto leverages Dask for parallelized computation, enabling efficient GRN inference from single-machine multi-core processing to multi-node cluster environments.
|
||||||
|
|
||||||
|
## Computation Architecture
|
||||||
|
|
||||||
|
GRN inference is inherently parallelizable:
|
||||||
|
- Each target gene's regression model can be trained independently
|
||||||
|
- Arboreto represents computation as a Dask task graph
|
||||||
|
- Tasks are distributed across available computational resources
|
||||||
|
|
||||||
|
## Local Multi-Core Processing (Default)
|
||||||
|
|
||||||
|
By default, arboreto uses all available CPU cores on the local machine:
|
||||||
|
|
||||||
|
```python
|
||||||
|
from arboreto.algo import grnboost2
|
||||||
|
|
||||||
|
# Automatically uses all local cores
|
||||||
|
network = grnboost2(expression_data=expression_matrix, tf_names=tf_names)
|
||||||
|
```
|
||||||
|
|
||||||
|
This is sufficient for most use cases and requires no additional configuration.
|
||||||
|
|
||||||
|
## Custom Local Dask Client
|
||||||
|
|
||||||
|
For fine-grained control over local resources, create a custom Dask client:
|
||||||
|
|
||||||
|
```python
|
||||||
|
from distributed import LocalCluster, Client
|
||||||
|
from arboreto.algo import grnboost2
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
# Configure local cluster
|
||||||
|
local_cluster = LocalCluster(
|
||||||
|
n_workers=10, # Number of worker processes
|
||||||
|
threads_per_worker=1, # Threads per worker
|
||||||
|
memory_limit='8GB' # Memory limit per worker
|
||||||
|
)
|
||||||
|
|
||||||
|
# Create client
|
||||||
|
custom_client = Client(local_cluster)
|
||||||
|
|
||||||
|
# Run inference with custom client
|
||||||
|
network = grnboost2(
|
||||||
|
expression_data=expression_matrix,
|
||||||
|
tf_names=tf_names,
|
||||||
|
client_or_address=custom_client
|
||||||
|
)
|
||||||
|
|
||||||
|
# Clean up
|
||||||
|
custom_client.close()
|
||||||
|
local_cluster.close()
|
||||||
|
```
|
||||||
|
|
||||||
|
### Benefits of Custom Client
|
||||||
|
- **Resource control**: Limit CPU and memory usage
|
||||||
|
- **Multiple runs**: Reuse same client for different parameter sets
|
||||||
|
- **Monitoring**: Access Dask dashboard for performance insights
|
||||||
|
|
||||||
|
## Multiple Inference Runs with Same Client
|
||||||
|
|
||||||
|
Reuse a single Dask client for multiple inference runs with different parameters:
|
||||||
|
|
||||||
|
```python
|
||||||
|
from distributed import LocalCluster, Client
|
||||||
|
from arboreto.algo import grnboost2
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
# Initialize client once
|
||||||
|
local_cluster = LocalCluster(n_workers=8, threads_per_worker=1)
|
||||||
|
client = Client(local_cluster)
|
||||||
|
|
||||||
|
# Run multiple inferences
|
||||||
|
network_seed1 = grnboost2(
|
||||||
|
expression_data=expression_matrix,
|
||||||
|
tf_names=tf_names,
|
||||||
|
client_or_address=client,
|
||||||
|
seed=666
|
||||||
|
)
|
||||||
|
|
||||||
|
network_seed2 = grnboost2(
|
||||||
|
expression_data=expression_matrix,
|
||||||
|
tf_names=tf_names,
|
||||||
|
client_or_address=client,
|
||||||
|
seed=777
|
||||||
|
)
|
||||||
|
|
||||||
|
# Different algorithms with same client
|
||||||
|
from arboreto.algo import genie3
|
||||||
|
network_genie3 = genie3(
|
||||||
|
expression_data=expression_matrix,
|
||||||
|
tf_names=tf_names,
|
||||||
|
client_or_address=client
|
||||||
|
)
|
||||||
|
|
||||||
|
# Clean up once
|
||||||
|
client.close()
|
||||||
|
local_cluster.close()
|
||||||
|
```
|
||||||
|
|
||||||
|
## Distributed Cluster Computing
|
||||||
|
|
||||||
|
For very large datasets, connect to a remote Dask distributed scheduler running on a cluster:
|
||||||
|
|
||||||
|
### Step 1: Set Up Dask Scheduler (on cluster head node)
|
||||||
|
```bash
|
||||||
|
dask-scheduler
|
||||||
|
# Output: Scheduler at tcp://10.118.224.134:8786
|
||||||
|
```
|
||||||
|
|
||||||
|
### Step 2: Start Dask Workers (on cluster compute nodes)
|
||||||
|
```bash
|
||||||
|
dask-worker tcp://10.118.224.134:8786
|
||||||
|
```
|
||||||
|
|
||||||
|
### Step 3: Connect from Client
|
||||||
|
```python
|
||||||
|
from distributed import Client
|
||||||
|
from arboreto.algo import grnboost2
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
# Connect to remote scheduler
|
||||||
|
scheduler_address = 'tcp://10.118.224.134:8786'
|
||||||
|
cluster_client = Client(scheduler_address)
|
||||||
|
|
||||||
|
# Run inference on cluster
|
||||||
|
network = grnboost2(
|
||||||
|
expression_data=expression_matrix,
|
||||||
|
tf_names=tf_names,
|
||||||
|
client_or_address=cluster_client
|
||||||
|
)
|
||||||
|
|
||||||
|
cluster_client.close()
|
||||||
|
```
|
||||||
|
|
||||||
|
### Cluster Configuration Best Practices
|
||||||
|
|
||||||
|
**Worker configuration**:
|
||||||
|
```bash
|
||||||
|
dask-worker tcp://scheduler:8786 \
|
||||||
|
--nprocs 4 \ # Number of processes per node
|
||||||
|
--nthreads 1 \ # Threads per process
|
||||||
|
--memory-limit 16GB # Memory per process
|
||||||
|
```
|
||||||
|
|
||||||
|
**For large-scale inference**:
|
||||||
|
- Use more workers with moderate memory rather than fewer workers with large memory
|
||||||
|
- Set `threads_per_worker=1` to avoid GIL contention in scikit-learn
|
||||||
|
- Monitor memory usage to prevent workers from being killed
|
||||||
|
|
||||||
|
## Monitoring and Debugging
|
||||||
|
|
||||||
|
### Dask Dashboard
|
||||||
|
|
||||||
|
Access the Dask dashboard for real-time monitoring:
|
||||||
|
|
||||||
|
```python
|
||||||
|
from distributed import Client
|
||||||
|
|
||||||
|
client = Client() # Prints dashboard URL
|
||||||
|
# Dashboard available at: http://localhost:8787/status
|
||||||
|
```
|
||||||
|
|
||||||
|
The dashboard shows:
|
||||||
|
- **Task progress**: Number of tasks completed/pending
|
||||||
|
- **Resource usage**: CPU, memory per worker
|
||||||
|
- **Task stream**: Real-time visualization of computation
|
||||||
|
- **Performance**: Bottleneck identification
|
||||||
|
|
||||||
|
### Verbose Output
|
||||||
|
|
||||||
|
Enable verbose logging to track inference progress:
|
||||||
|
|
||||||
|
```python
|
||||||
|
network = grnboost2(
|
||||||
|
expression_data=expression_matrix,
|
||||||
|
tf_names=tf_names,
|
||||||
|
verbose=True
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
## Performance Optimization Tips
|
||||||
|
|
||||||
|
### 1. Data Format
|
||||||
|
- **Use Pandas DataFrame when possible**: More efficient than NumPy for Dask operations
|
||||||
|
- **Reduce data size**: Filter low-variance genes before inference
|
||||||
|
|
||||||
|
### 2. Worker Configuration
|
||||||
|
- **CPU-bound tasks**: Set `threads_per_worker=1`, increase `n_workers`
|
||||||
|
- **Memory-bound tasks**: Increase `memory_limit` per worker
|
||||||
|
|
||||||
|
### 3. Cluster Setup
|
||||||
|
- **Network**: Ensure high-bandwidth, low-latency network between nodes
|
||||||
|
- **Storage**: Use shared filesystem or object storage for large datasets
|
||||||
|
- **Scheduling**: Allocate dedicated nodes to avoid resource contention
|
||||||
|
|
||||||
|
### 4. Transcription Factor Filtering
|
||||||
|
- **Limit TF list**: Providing specific TF names reduces computation
|
||||||
|
```python
|
||||||
|
# Full search (slow)
|
||||||
|
network = grnboost2(expression_data=matrix)
|
||||||
|
|
||||||
|
# Filtered search (faster)
|
||||||
|
network = grnboost2(expression_data=matrix, tf_names=known_tfs)
|
||||||
|
```
|
||||||
|
|
||||||
|
## Example: Large-Scale Single-Cell Analysis
|
||||||
|
|
||||||
|
Complete workflow for processing single-cell RNA-seq data on a cluster:
|
||||||
|
|
||||||
|
```python
|
||||||
|
from distributed import Client
|
||||||
|
from arboreto.algo import grnboost2
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
# Connect to cluster
|
||||||
|
client = Client('tcp://cluster-scheduler:8786')
|
||||||
|
|
||||||
|
# Load large single-cell dataset (50,000 cells x 20,000 genes)
|
||||||
|
expression_data = pd.read_csv('scrnaseq_data.tsv', sep='\t')
|
||||||
|
|
||||||
|
# Load cell-type-specific TFs
|
||||||
|
tf_names = pd.read_csv('tf_list.txt', header=None)[0].tolist()
|
||||||
|
|
||||||
|
# Run distributed inference
|
||||||
|
network = grnboost2(
|
||||||
|
expression_data=expression_data,
|
||||||
|
tf_names=tf_names,
|
||||||
|
client_or_address=client,
|
||||||
|
verbose=True,
|
||||||
|
seed=42
|
||||||
|
)
|
||||||
|
|
||||||
|
# Save results
|
||||||
|
network.to_csv('grn_results.tsv', sep='\t', index=False)
|
||||||
|
|
||||||
|
client.close()
|
||||||
|
```
|
||||||
|
|
||||||
|
This approach enables analysis of datasets that would be impractical on a single machine.
|
||||||
@@ -1,18 +1,18 @@
|
|||||||
#!/usr/bin/env python3
|
#!/usr/bin/env python3
|
||||||
"""
|
"""
|
||||||
Basic GRN inference script using arboreto GRNBoost2.
|
Basic GRN inference example using Arboreto.
|
||||||
|
|
||||||
This script demonstrates the standard workflow for gene regulatory network inference:
|
This script demonstrates the standard workflow for inferring gene regulatory
|
||||||
1. Load expression data
|
networks from expression data using GRNBoost2.
|
||||||
2. Optionally load transcription factor names
|
|
||||||
3. Run GRNBoost2 inference
|
|
||||||
4. Save results
|
|
||||||
|
|
||||||
Usage:
|
Usage:
|
||||||
python basic_grn_inference.py <expression_file> [options]
|
python basic_grn_inference.py <expression_file> <output_file> [--tf-file TF_FILE] [--seed SEED]
|
||||||
|
|
||||||
Example:
|
Arguments:
|
||||||
python basic_grn_inference.py expression_data.tsv -t tf_names.txt -o network.tsv
|
expression_file: Path to expression matrix (TSV format, genes as columns)
|
||||||
|
output_file: Path for output network (TSV format)
|
||||||
|
--tf-file: Optional path to transcription factors file (one per line)
|
||||||
|
--seed: Random seed for reproducibility (default: 777)
|
||||||
"""
|
"""
|
||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
@@ -21,90 +21,77 @@ from arboreto.algo import grnboost2
|
|||||||
from arboreto.utils import load_tf_names
|
from arboreto.utils import load_tf_names
|
||||||
|
|
||||||
|
|
||||||
def main():
|
def run_grn_inference(expression_file, output_file, tf_file=None, seed=777):
|
||||||
|
"""
|
||||||
|
Run GRN inference using GRNBoost2.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
expression_file: Path to expression matrix TSV file
|
||||||
|
output_file: Path for output network file
|
||||||
|
tf_file: Optional path to TF names file
|
||||||
|
seed: Random seed for reproducibility
|
||||||
|
"""
|
||||||
|
print(f"Loading expression data from {expression_file}...")
|
||||||
|
expression_data = pd.read_csv(expression_file, sep='\t')
|
||||||
|
|
||||||
|
print(f"Expression matrix shape: {expression_data.shape}")
|
||||||
|
print(f"Number of genes: {expression_data.shape[1]}")
|
||||||
|
print(f"Number of observations: {expression_data.shape[0]}")
|
||||||
|
|
||||||
|
# Load TF names if provided
|
||||||
|
tf_names = 'all'
|
||||||
|
if tf_file:
|
||||||
|
print(f"Loading transcription factors from {tf_file}...")
|
||||||
|
tf_names = load_tf_names(tf_file)
|
||||||
|
print(f"Number of TFs: {len(tf_names)}")
|
||||||
|
|
||||||
|
# Run GRN inference
|
||||||
|
print(f"Running GRNBoost2 with seed={seed}...")
|
||||||
|
network = grnboost2(
|
||||||
|
expression_data=expression_data,
|
||||||
|
tf_names=tf_names,
|
||||||
|
seed=seed,
|
||||||
|
verbose=True
|
||||||
|
)
|
||||||
|
|
||||||
|
# Save results
|
||||||
|
print(f"Saving network to {output_file}...")
|
||||||
|
network.to_csv(output_file, sep='\t', index=False, header=False)
|
||||||
|
|
||||||
|
print(f"Done! Network contains {len(network)} regulatory links.")
|
||||||
|
print(f"\nTop 10 regulatory links:")
|
||||||
|
print(network.head(10).to_string(index=False))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
parser = argparse.ArgumentParser(
|
parser = argparse.ArgumentParser(
|
||||||
description='Infer gene regulatory network using GRNBoost2'
|
description='Infer gene regulatory network using GRNBoost2'
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
'expression_file',
|
'expression_file',
|
||||||
help='Path to expression data file (TSV/CSV format)'
|
help='Path to expression matrix (TSV format, genes as columns)'
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
'-t', '--tf-file',
|
'output_file',
|
||||||
help='Path to file containing transcription factor names (one per line)',
|
help='Path for output network (TSV format)'
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
'--tf-file',
|
||||||
|
help='Path to transcription factors file (one per line)',
|
||||||
default=None
|
default=None
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
'-o', '--output',
|
'--seed',
|
||||||
help='Output file path for network results',
|
help='Random seed for reproducibility (default: 777)',
|
||||||
default='network_output.tsv'
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
'-s', '--seed',
|
|
||||||
type=int,
|
type=int,
|
||||||
help='Random seed for reproducibility',
|
default=777
|
||||||
default=42
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
'--sep',
|
|
||||||
help='Separator for input file (default: tab)',
|
|
||||||
default='\t'
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
'--transpose',
|
|
||||||
action='store_true',
|
|
||||||
help='Transpose the expression matrix (use if genes are rows)'
|
|
||||||
)
|
)
|
||||||
|
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
# Load expression data
|
run_grn_inference(
|
||||||
print(f"Loading expression data from {args.expression_file}...")
|
expression_file=args.expression_file,
|
||||||
expression_data = pd.read_csv(args.expression_file, sep=args.sep, index_col=0)
|
output_file=args.output_file,
|
||||||
|
tf_file=args.tf_file,
|
||||||
# Transpose if needed
|
|
||||||
if args.transpose:
|
|
||||||
print("Transposing expression matrix...")
|
|
||||||
expression_data = expression_data.T
|
|
||||||
|
|
||||||
print(f"Expression data shape: {expression_data.shape}")
|
|
||||||
print(f" Observations (rows): {expression_data.shape[0]}")
|
|
||||||
print(f" Genes (columns): {expression_data.shape[1]}")
|
|
||||||
|
|
||||||
# Load TF names if provided
|
|
||||||
tf_names = None
|
|
||||||
if args.tf_file:
|
|
||||||
print(f"Loading transcription factor names from {args.tf_file}...")
|
|
||||||
tf_names = load_tf_names(args.tf_file)
|
|
||||||
print(f" Found {len(tf_names)} transcription factors")
|
|
||||||
else:
|
|
||||||
print("No TF file provided. Using all genes as potential regulators.")
|
|
||||||
|
|
||||||
# Run GRNBoost2
|
|
||||||
print("\nRunning GRNBoost2 inference...")
|
|
||||||
print(" (This may take a while depending on dataset size)")
|
|
||||||
|
|
||||||
network = grnboost2(
|
|
||||||
expression_data=expression_data,
|
|
||||||
tf_names=tf_names,
|
|
||||||
seed=args.seed
|
seed=args.seed
|
||||||
)
|
)
|
||||||
|
|
||||||
print(f"\nInference complete!")
|
|
||||||
print(f" Total regulatory links inferred: {len(network)}")
|
|
||||||
print(f" Unique TFs: {network['TF'].nunique()}")
|
|
||||||
print(f" Unique targets: {network['target'].nunique()}")
|
|
||||||
|
|
||||||
# Save results
|
|
||||||
print(f"\nSaving results to {args.output}...")
|
|
||||||
network.to_csv(args.output, sep='\t', index=False)
|
|
||||||
|
|
||||||
# Display top 10 predictions
|
|
||||||
print("\nTop 10 predicted regulatory relationships:")
|
|
||||||
print(network.head(10).to_string(index=False))
|
|
||||||
|
|
||||||
print("\nDone!")
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
main()
|
|
||||||
|
|||||||
@@ -1,205 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
"""
|
|
||||||
Compare GRNBoost2 and GENIE3 algorithms on the same dataset.
|
|
||||||
|
|
||||||
This script runs both algorithms on the same expression data and compares:
|
|
||||||
- Runtime
|
|
||||||
- Number of predicted links
|
|
||||||
- Top predicted relationships
|
|
||||||
- Overlap between predictions
|
|
||||||
|
|
||||||
Usage:
|
|
||||||
python compare_algorithms.py <expression_file> [options]
|
|
||||||
|
|
||||||
Example:
|
|
||||||
python compare_algorithms.py expression_data.tsv -t tf_names.txt
|
|
||||||
"""
|
|
||||||
|
|
||||||
import argparse
|
|
||||||
import time
|
|
||||||
import pandas as pd
|
|
||||||
from arboreto.algo import grnboost2, genie3
|
|
||||||
from arboreto.utils import load_tf_names
|
|
||||||
|
|
||||||
|
|
||||||
def compare_networks(network1, network2, name1, name2, top_n=100):
|
|
||||||
"""Compare two inferred networks."""
|
|
||||||
print(f"\n{'='*60}")
|
|
||||||
print("Network Comparison")
|
|
||||||
print(f"{'='*60}")
|
|
||||||
|
|
||||||
# Basic statistics
|
|
||||||
print(f"\n{name1} Statistics:")
|
|
||||||
print(f" Total links: {len(network1)}")
|
|
||||||
print(f" Unique TFs: {network1['TF'].nunique()}")
|
|
||||||
print(f" Unique targets: {network1['target'].nunique()}")
|
|
||||||
print(f" Importance range: [{network1['importance'].min():.3f}, {network1['importance'].max():.3f}]")
|
|
||||||
|
|
||||||
print(f"\n{name2} Statistics:")
|
|
||||||
print(f" Total links: {len(network2)}")
|
|
||||||
print(f" Unique TFs: {network2['TF'].nunique()}")
|
|
||||||
print(f" Unique targets: {network2['target'].nunique()}")
|
|
||||||
print(f" Importance range: [{network2['importance'].min():.3f}, {network2['importance'].max():.3f}]")
|
|
||||||
|
|
||||||
# Compare top predictions
|
|
||||||
print(f"\nTop {top_n} Predictions Overlap:")
|
|
||||||
|
|
||||||
# Create edge sets for top N predictions
|
|
||||||
top_edges1 = set(
|
|
||||||
zip(network1.head(top_n)['TF'], network1.head(top_n)['target'])
|
|
||||||
)
|
|
||||||
top_edges2 = set(
|
|
||||||
zip(network2.head(top_n)['TF'], network2.head(top_n)['target'])
|
|
||||||
)
|
|
||||||
|
|
||||||
# Calculate overlap
|
|
||||||
overlap = top_edges1 & top_edges2
|
|
||||||
only_net1 = top_edges1 - top_edges2
|
|
||||||
only_net2 = top_edges2 - top_edges1
|
|
||||||
|
|
||||||
overlap_pct = (len(overlap) / top_n) * 100
|
|
||||||
|
|
||||||
print(f" Shared edges: {len(overlap)} ({overlap_pct:.1f}%)")
|
|
||||||
print(f" Only in {name1}: {len(only_net1)}")
|
|
||||||
print(f" Only in {name2}: {len(only_net2)}")
|
|
||||||
|
|
||||||
# Show some example overlapping edges
|
|
||||||
if overlap:
|
|
||||||
print(f"\nExample overlapping predictions:")
|
|
||||||
for i, (tf, target) in enumerate(list(overlap)[:5], 1):
|
|
||||||
print(f" {i}. {tf} -> {target}")
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
parser = argparse.ArgumentParser(
|
|
||||||
description='Compare GRNBoost2 and GENIE3 algorithms'
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
'expression_file',
|
|
||||||
help='Path to expression data file (TSV/CSV format)'
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
'-t', '--tf-file',
|
|
||||||
help='Path to file containing transcription factor names (one per line)',
|
|
||||||
default=None
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
'--grnboost2-output',
|
|
||||||
help='Output file path for GRNBoost2 results',
|
|
||||||
default='grnboost2_network.tsv'
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
'--genie3-output',
|
|
||||||
help='Output file path for GENIE3 results',
|
|
||||||
default='genie3_network.tsv'
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
'-s', '--seed',
|
|
||||||
type=int,
|
|
||||||
help='Random seed for reproducibility',
|
|
||||||
default=42
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
'--sep',
|
|
||||||
help='Separator for input file (default: tab)',
|
|
||||||
default='\t'
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
'--transpose',
|
|
||||||
action='store_true',
|
|
||||||
help='Transpose the expression matrix (use if genes are rows)'
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
'--top-n',
|
|
||||||
type=int,
|
|
||||||
help='Number of top predictions to compare (default: 100)',
|
|
||||||
default=100
|
|
||||||
)
|
|
||||||
|
|
||||||
args = parser.parse_args()
|
|
||||||
|
|
||||||
# Load expression data
|
|
||||||
print(f"Loading expression data from {args.expression_file}...")
|
|
||||||
expression_data = pd.read_csv(args.expression_file, sep=args.sep, index_col=0)
|
|
||||||
|
|
||||||
# Transpose if needed
|
|
||||||
if args.transpose:
|
|
||||||
print("Transposing expression matrix...")
|
|
||||||
expression_data = expression_data.T
|
|
||||||
|
|
||||||
print(f"Expression data shape: {expression_data.shape}")
|
|
||||||
print(f" Observations (rows): {expression_data.shape[0]}")
|
|
||||||
print(f" Genes (columns): {expression_data.shape[1]}")
|
|
||||||
|
|
||||||
# Load TF names if provided
|
|
||||||
tf_names = None
|
|
||||||
if args.tf_file:
|
|
||||||
print(f"Loading transcription factor names from {args.tf_file}...")
|
|
||||||
tf_names = load_tf_names(args.tf_file)
|
|
||||||
print(f" Found {len(tf_names)} transcription factors")
|
|
||||||
else:
|
|
||||||
print("No TF file provided. Using all genes as potential regulators.")
|
|
||||||
|
|
||||||
# Run GRNBoost2
|
|
||||||
print("\n" + "="*60)
|
|
||||||
print("Running GRNBoost2...")
|
|
||||||
print("="*60)
|
|
||||||
start_time = time.time()
|
|
||||||
|
|
||||||
grnboost2_network = grnboost2(
|
|
||||||
expression_data=expression_data,
|
|
||||||
tf_names=tf_names,
|
|
||||||
seed=args.seed
|
|
||||||
)
|
|
||||||
|
|
||||||
grnboost2_time = time.time() - start_time
|
|
||||||
print(f"GRNBoost2 completed in {grnboost2_time:.2f} seconds")
|
|
||||||
|
|
||||||
# Save GRNBoost2 results
|
|
||||||
grnboost2_network.to_csv(args.grnboost2_output, sep='\t', index=False)
|
|
||||||
print(f"Results saved to {args.grnboost2_output}")
|
|
||||||
|
|
||||||
# Run GENIE3
|
|
||||||
print("\n" + "="*60)
|
|
||||||
print("Running GENIE3...")
|
|
||||||
print("="*60)
|
|
||||||
start_time = time.time()
|
|
||||||
|
|
||||||
genie3_network = genie3(
|
|
||||||
expression_data=expression_data,
|
|
||||||
tf_names=tf_names,
|
|
||||||
seed=args.seed
|
|
||||||
)
|
|
||||||
|
|
||||||
genie3_time = time.time() - start_time
|
|
||||||
print(f"GENIE3 completed in {genie3_time:.2f} seconds")
|
|
||||||
|
|
||||||
# Save GENIE3 results
|
|
||||||
genie3_network.to_csv(args.genie3_output, sep='\t', index=False)
|
|
||||||
print(f"Results saved to {args.genie3_output}")
|
|
||||||
|
|
||||||
# Compare runtimes
|
|
||||||
print("\n" + "="*60)
|
|
||||||
print("Runtime Comparison")
|
|
||||||
print("="*60)
|
|
||||||
print(f"GRNBoost2: {grnboost2_time:.2f} seconds")
|
|
||||||
print(f"GENIE3: {genie3_time:.2f} seconds")
|
|
||||||
speedup = genie3_time / grnboost2_time
|
|
||||||
print(f"Speedup: {speedup:.2f}x (GRNBoost2 is {speedup:.2f}x faster)")
|
|
||||||
|
|
||||||
# Compare networks
|
|
||||||
compare_networks(
|
|
||||||
grnboost2_network,
|
|
||||||
genie3_network,
|
|
||||||
"GRNBoost2",
|
|
||||||
"GENIE3",
|
|
||||||
top_n=args.top_n
|
|
||||||
)
|
|
||||||
|
|
||||||
print("\n" + "="*60)
|
|
||||||
print("Comparison complete!")
|
|
||||||
print("="*60)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
main()
|
|
||||||
@@ -1,157 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
"""
|
|
||||||
Distributed GRN inference script using arboreto with custom Dask configuration.
|
|
||||||
|
|
||||||
This script demonstrates how to use arboreto with a custom Dask LocalCluster
|
|
||||||
for better control over computational resources.
|
|
||||||
|
|
||||||
Usage:
|
|
||||||
python distributed_inference.py <expression_file> [options]
|
|
||||||
|
|
||||||
Example:
|
|
||||||
python distributed_inference.py expression_data.tsv -t tf_names.txt -w 8 -m 4GB
|
|
||||||
"""
|
|
||||||
|
|
||||||
import argparse
|
|
||||||
import pandas as pd
|
|
||||||
from dask.distributed import Client, LocalCluster
|
|
||||||
from arboreto.algo import grnboost2
|
|
||||||
from arboreto.utils import load_tf_names
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
parser = argparse.ArgumentParser(
|
|
||||||
description='Distributed GRN inference using GRNBoost2 with custom Dask cluster'
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
'expression_file',
|
|
||||||
help='Path to expression data file (TSV/CSV format)'
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
'-t', '--tf-file',
|
|
||||||
help='Path to file containing transcription factor names (one per line)',
|
|
||||||
default=None
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
'-o', '--output',
|
|
||||||
help='Output file path for network results',
|
|
||||||
default='network_output.tsv'
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
'-s', '--seed',
|
|
||||||
type=int,
|
|
||||||
help='Random seed for reproducibility',
|
|
||||||
default=42
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
'-w', '--workers',
|
|
||||||
type=int,
|
|
||||||
help='Number of Dask workers',
|
|
||||||
default=4
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
'-m', '--memory-limit',
|
|
||||||
help='Memory limit per worker (e.g., "4GB", "2000MB")',
|
|
||||||
default='4GB'
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
'--threads',
|
|
||||||
type=int,
|
|
||||||
help='Threads per worker',
|
|
||||||
default=2
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
'--dashboard-port',
|
|
||||||
type=int,
|
|
||||||
help='Port for Dask dashboard (default: 8787)',
|
|
||||||
default=8787
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
'--sep',
|
|
||||||
help='Separator for input file (default: tab)',
|
|
||||||
default='\t'
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
'--transpose',
|
|
||||||
action='store_true',
|
|
||||||
help='Transpose the expression matrix (use if genes are rows)'
|
|
||||||
)
|
|
||||||
|
|
||||||
args = parser.parse_args()
|
|
||||||
|
|
||||||
# Load expression data
|
|
||||||
print(f"Loading expression data from {args.expression_file}...")
|
|
||||||
expression_data = pd.read_csv(args.expression_file, sep=args.sep, index_col=0)
|
|
||||||
|
|
||||||
# Transpose if needed
|
|
||||||
if args.transpose:
|
|
||||||
print("Transposing expression matrix...")
|
|
||||||
expression_data = expression_data.T
|
|
||||||
|
|
||||||
print(f"Expression data shape: {expression_data.shape}")
|
|
||||||
print(f" Observations (rows): {expression_data.shape[0]}")
|
|
||||||
print(f" Genes (columns): {expression_data.shape[1]}")
|
|
||||||
|
|
||||||
# Load TF names if provided
|
|
||||||
tf_names = None
|
|
||||||
if args.tf_file:
|
|
||||||
print(f"Loading transcription factor names from {args.tf_file}...")
|
|
||||||
tf_names = load_tf_names(args.tf_file)
|
|
||||||
print(f" Found {len(tf_names)} transcription factors")
|
|
||||||
else:
|
|
||||||
print("No TF file provided. Using all genes as potential regulators.")
|
|
||||||
|
|
||||||
# Set up Dask cluster
|
|
||||||
print(f"\nSetting up Dask LocalCluster...")
|
|
||||||
print(f" Workers: {args.workers}")
|
|
||||||
print(f" Threads per worker: {args.threads}")
|
|
||||||
print(f" Memory limit per worker: {args.memory_limit}")
|
|
||||||
print(f" Dashboard: http://localhost:{args.dashboard_port}")
|
|
||||||
|
|
||||||
cluster = LocalCluster(
|
|
||||||
n_workers=args.workers,
|
|
||||||
threads_per_worker=args.threads,
|
|
||||||
memory_limit=args.memory_limit,
|
|
||||||
diagnostics_port=args.dashboard_port
|
|
||||||
)
|
|
||||||
client = Client(cluster)
|
|
||||||
|
|
||||||
print(f"\nDask cluster ready!")
|
|
||||||
print(f" Dashboard available at: {client.dashboard_link}")
|
|
||||||
|
|
||||||
# Run GRNBoost2
|
|
||||||
print("\nRunning GRNBoost2 inference with distributed computation...")
|
|
||||||
print(" (Monitor progress via the Dask dashboard)")
|
|
||||||
|
|
||||||
try:
|
|
||||||
network = grnboost2(
|
|
||||||
expression_data=expression_data,
|
|
||||||
tf_names=tf_names,
|
|
||||||
seed=args.seed,
|
|
||||||
client_or_address=client
|
|
||||||
)
|
|
||||||
|
|
||||||
print(f"\nInference complete!")
|
|
||||||
print(f" Total regulatory links inferred: {len(network)}")
|
|
||||||
print(f" Unique TFs: {network['TF'].nunique()}")
|
|
||||||
print(f" Unique targets: {network['target'].nunique()}")
|
|
||||||
|
|
||||||
# Save results
|
|
||||||
print(f"\nSaving results to {args.output}...")
|
|
||||||
network.to_csv(args.output, sep='\t', index=False)
|
|
||||||
|
|
||||||
# Display top 10 predictions
|
|
||||||
print("\nTop 10 predicted regulatory relationships:")
|
|
||||||
print(network.head(10).to_string(index=False))
|
|
||||||
|
|
||||||
print("\nDone!")
|
|
||||||
|
|
||||||
finally:
|
|
||||||
# Clean up Dask resources
|
|
||||||
print("\nClosing Dask cluster...")
|
|
||||||
client.close()
|
|
||||||
cluster.close()
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
main()
|
|
||||||
Reference in New Issue
Block a user