mirror of
https://github.com/K-Dense-AI/claude-scientific-skills.git
synced 2026-01-26 16:58:56 +08:00
158 lines
4.6 KiB
Python
158 lines
4.6 KiB
Python
#!/usr/bin/env python3
|
|
"""
|
|
Distributed GRN inference script using arboreto with custom Dask configuration.
|
|
|
|
This script demonstrates how to use arboreto with a custom Dask LocalCluster
|
|
for better control over computational resources.
|
|
|
|
Usage:
|
|
python distributed_inference.py <expression_file> [options]
|
|
|
|
Example:
|
|
python distributed_inference.py expression_data.tsv -t tf_names.txt -w 8 -m 4GB
|
|
"""
|
|
|
|
import argparse
|
|
import pandas as pd
|
|
from dask.distributed import Client, LocalCluster
|
|
from arboreto.algo import grnboost2
|
|
from arboreto.utils import load_tf_names
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(
|
|
description='Distributed GRN inference using GRNBoost2 with custom Dask cluster'
|
|
)
|
|
parser.add_argument(
|
|
'expression_file',
|
|
help='Path to expression data file (TSV/CSV format)'
|
|
)
|
|
parser.add_argument(
|
|
'-t', '--tf-file',
|
|
help='Path to file containing transcription factor names (one per line)',
|
|
default=None
|
|
)
|
|
parser.add_argument(
|
|
'-o', '--output',
|
|
help='Output file path for network results',
|
|
default='network_output.tsv'
|
|
)
|
|
parser.add_argument(
|
|
'-s', '--seed',
|
|
type=int,
|
|
help='Random seed for reproducibility',
|
|
default=42
|
|
)
|
|
parser.add_argument(
|
|
'-w', '--workers',
|
|
type=int,
|
|
help='Number of Dask workers',
|
|
default=4
|
|
)
|
|
parser.add_argument(
|
|
'-m', '--memory-limit',
|
|
help='Memory limit per worker (e.g., "4GB", "2000MB")',
|
|
default='4GB'
|
|
)
|
|
parser.add_argument(
|
|
'--threads',
|
|
type=int,
|
|
help='Threads per worker',
|
|
default=2
|
|
)
|
|
parser.add_argument(
|
|
'--dashboard-port',
|
|
type=int,
|
|
help='Port for Dask dashboard (default: 8787)',
|
|
default=8787
|
|
)
|
|
parser.add_argument(
|
|
'--sep',
|
|
help='Separator for input file (default: tab)',
|
|
default='\t'
|
|
)
|
|
parser.add_argument(
|
|
'--transpose',
|
|
action='store_true',
|
|
help='Transpose the expression matrix (use if genes are rows)'
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
|
|
# Load expression data
|
|
print(f"Loading expression data from {args.expression_file}...")
|
|
expression_data = pd.read_csv(args.expression_file, sep=args.sep, index_col=0)
|
|
|
|
# Transpose if needed
|
|
if args.transpose:
|
|
print("Transposing expression matrix...")
|
|
expression_data = expression_data.T
|
|
|
|
print(f"Expression data shape: {expression_data.shape}")
|
|
print(f" Observations (rows): {expression_data.shape[0]}")
|
|
print(f" Genes (columns): {expression_data.shape[1]}")
|
|
|
|
# Load TF names if provided
|
|
tf_names = None
|
|
if args.tf_file:
|
|
print(f"Loading transcription factor names from {args.tf_file}...")
|
|
tf_names = load_tf_names(args.tf_file)
|
|
print(f" Found {len(tf_names)} transcription factors")
|
|
else:
|
|
print("No TF file provided. Using all genes as potential regulators.")
|
|
|
|
# Set up Dask cluster
|
|
print(f"\nSetting up Dask LocalCluster...")
|
|
print(f" Workers: {args.workers}")
|
|
print(f" Threads per worker: {args.threads}")
|
|
print(f" Memory limit per worker: {args.memory_limit}")
|
|
print(f" Dashboard: http://localhost:{args.dashboard_port}")
|
|
|
|
cluster = LocalCluster(
|
|
n_workers=args.workers,
|
|
threads_per_worker=args.threads,
|
|
memory_limit=args.memory_limit,
|
|
diagnostics_port=args.dashboard_port
|
|
)
|
|
client = Client(cluster)
|
|
|
|
print(f"\nDask cluster ready!")
|
|
print(f" Dashboard available at: {client.dashboard_link}")
|
|
|
|
# Run GRNBoost2
|
|
print("\nRunning GRNBoost2 inference with distributed computation...")
|
|
print(" (Monitor progress via the Dask dashboard)")
|
|
|
|
try:
|
|
network = grnboost2(
|
|
expression_data=expression_data,
|
|
tf_names=tf_names,
|
|
seed=args.seed,
|
|
client_or_address=client
|
|
)
|
|
|
|
print(f"\nInference complete!")
|
|
print(f" Total regulatory links inferred: {len(network)}")
|
|
print(f" Unique TFs: {network['TF'].nunique()}")
|
|
print(f" Unique targets: {network['target'].nunique()}")
|
|
|
|
# Save results
|
|
print(f"\nSaving results to {args.output}...")
|
|
network.to_csv(args.output, sep='\t', index=False)
|
|
|
|
# Display top 10 predictions
|
|
print("\nTop 10 predicted regulatory relationships:")
|
|
print(network.head(10).to_string(index=False))
|
|
|
|
print("\nDone!")
|
|
|
|
finally:
|
|
# Clean up Dask resources
|
|
print("\nClosing Dask cluster...")
|
|
client.close()
|
|
cluster.close()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|