mirror of
https://github.com/K-Dense-AI/claude-scientific-skills.git
synced 2026-01-26 16:58:56 +08:00
Improve the arboreto skill
This commit is contained in:
@@ -1,415 +1,250 @@
|
||||
---
|
||||
name: arboreto
|
||||
description: "Gene regulatory network inference with GRNBoost2/GENIE3 algorithms. Infer TF-target relationships from expression data, scalable with Dask, for scRNA-seq and GRN analysis."
|
||||
description: Infer gene regulatory networks (GRNs) from gene expression data using scalable algorithms (GRNBoost2, GENIE3). Use when analyzing transcriptomics data (bulk RNA-seq, single-cell RNA-seq) to identify transcription factor-target gene relationships and regulatory interactions. Supports distributed computation for large-scale datasets.
|
||||
---
|
||||
|
||||
# Arboreto - Gene Regulatory Network Inference
|
||||
# Arboreto
|
||||
|
||||
## Overview
|
||||
|
||||
Arboreto is a Python library for inferring gene regulatory networks (GRNs) from gene expression data using machine learning algorithms. It enables scalable GRN inference from single machines to multi-node clusters using Dask for distributed computing. The skill provides comprehensive support for both GRNBoost2 (fast gradient boosting) and GENIE3 (Random Forest) algorithms.
|
||||
Arboreto is a computational library for inferring gene regulatory networks (GRNs) from gene expression data using parallelized algorithms that scale from single machines to multi-node clusters.
|
||||
|
||||
## When to Use This Skill
|
||||
**Core capability**: Identify which transcription factors (TFs) regulate which target genes based on expression patterns across observations (cells, samples, conditions).
|
||||
|
||||
This skill should be used when:
|
||||
- Inferring regulatory relationships between genes from expression data
|
||||
- Analyzing single-cell or bulk RNA-seq data to identify transcription factor targets
|
||||
- Building the GRN inference component of a pySCENIC pipeline
|
||||
- Comparing GRNBoost2 and GENIE3 algorithm performance
|
||||
- Setting up distributed computing for large-scale genomic analyses
|
||||
- Troubleshooting arboreto installation or runtime issues
|
||||
## Quick Start
|
||||
|
||||
Install arboreto:
|
||||
```bash
|
||||
pip install arboreto
|
||||
```
|
||||
|
||||
Basic GRN inference:
|
||||
```python
|
||||
import pandas as pd
|
||||
from arboreto.algo import grnboost2
|
||||
|
||||
if __name__ == '__main__':
|
||||
# Load expression data (genes as columns)
|
||||
expression_matrix = pd.read_csv('expression_data.tsv', sep='\t')
|
||||
|
||||
# Infer regulatory network
|
||||
network = grnboost2(expression_data=expression_matrix)
|
||||
|
||||
# Save results (TF, target, importance)
|
||||
network.to_csv('network.tsv', sep='\t', index=False, header=False)
|
||||
```
|
||||
|
||||
**Critical**: Always use `if __name__ == '__main__':` guard because Dask spawns new processes.
|
||||
|
||||
## Core Capabilities
|
||||
|
||||
### 1. Basic GRN Inference
|
||||
|
||||
For standard gene regulatory network inference tasks:
|
||||
For standard GRN inference workflows including:
|
||||
- Input data preparation (Pandas DataFrame or NumPy array)
|
||||
- Running inference with GRNBoost2 or GENIE3
|
||||
- Filtering by transcription factors
|
||||
- Output format and interpretation
|
||||
|
||||
**Key considerations:**
|
||||
- Expression data format: Rows = observations (cells/samples), Columns = genes
|
||||
- If data has genes as rows, transpose it first: `expression_df.T`
|
||||
- Always include `seed` parameter for reproducible results
|
||||
- Transcription factor list is optional but recommended for focused analysis
|
||||
**See**: `references/basic_inference.md`
|
||||
|
||||
**Typical workflow:**
|
||||
```python
|
||||
import pandas as pd
|
||||
from arboreto.algo import grnboost2
|
||||
from arboreto.utils import load_tf_names
|
||||
|
||||
# Load expression data (ensure correct orientation)
|
||||
expression_data = pd.read_csv('expression_data.tsv', sep='\t', index_col=0)
|
||||
|
||||
# Optional: Load TF names
|
||||
tf_names = load_tf_names('transcription_factors.txt')
|
||||
|
||||
# Run inference
|
||||
network = grnboost2(
|
||||
expression_data=expression_data,
|
||||
tf_names=tf_names,
|
||||
seed=42 # For reproducibility
|
||||
)
|
||||
|
||||
# Save results
|
||||
network.to_csv('network_output.tsv', sep='\t', index=False)
|
||||
```
|
||||
|
||||
**Output format:**
|
||||
- DataFrame with columns: `['TF', 'target', 'importance']`
|
||||
- Higher importance scores indicate stronger predicted regulatory relationships
|
||||
- Typically sorted by importance (descending)
|
||||
|
||||
**Multiprocessing requirement:**
|
||||
All arboreto code must include `if __name__ == '__main__':` protection due to Dask's multiprocessing requirements:
|
||||
|
||||
```python
|
||||
if __name__ == '__main__':
|
||||
# Arboreto code goes here
|
||||
network = grnboost2(expression_data=expr_data, seed=42)
|
||||
**Use the ready-to-run script**: `scripts/basic_grn_inference.py` for standard inference tasks:
|
||||
```bash
|
||||
python scripts/basic_grn_inference.py expression_data.tsv output_network.tsv --tf-file tfs.txt --seed 777
|
||||
```
|
||||
|
||||
### 2. Algorithm Selection
|
||||
|
||||
**GRNBoost2 (Recommended for most cases):**
|
||||
- ~10-100x faster than GENIE3
|
||||
- Uses stochastic gradient boosting with early-stopping
|
||||
- Best for: Large datasets (>10k observations), time-sensitive analyses
|
||||
- Function: `arboreto.algo.grnboost2()`
|
||||
Arboreto provides two algorithms:
|
||||
|
||||
**GENIE3:**
|
||||
- Uses Random Forest regression
|
||||
- More established, classical approach
|
||||
- Best for: Small datasets, methodological comparisons, reproducing published results
|
||||
- Function: `arboreto.algo.genie3()`
|
||||
**GRNBoost2 (Recommended)**:
|
||||
- Fast gradient boosting-based inference
|
||||
- Optimized for large datasets (10k+ observations)
|
||||
- Default choice for most analyses
|
||||
|
||||
**When to compare both algorithms:**
|
||||
Use the provided `compare_algorithms.py` script when:
|
||||
- Validating results for critical analyses
|
||||
- Benchmarking performance on new datasets
|
||||
- Publishing research requiring methodological comparisons
|
||||
**GENIE3**:
|
||||
- Random Forest-based inference
|
||||
- Original multiple regression approach
|
||||
- Use for comparison or validation
|
||||
|
||||
Quick comparison:
|
||||
```python
|
||||
from arboreto.algo import grnboost2, genie3
|
||||
|
||||
# Fast, recommended
|
||||
network_grnboost = grnboost2(expression_data=matrix)
|
||||
|
||||
# Classic algorithm
|
||||
network_genie3 = genie3(expression_data=matrix)
|
||||
```
|
||||
|
||||
**For detailed algorithm comparison, parameters, and selection guidance**: `references/algorithms.md`
|
||||
|
||||
### 3. Distributed Computing
|
||||
|
||||
**Local execution (default):**
|
||||
Arboreto automatically creates a local Dask client. No configuration needed:
|
||||
Scale inference from local multi-core to cluster environments:
|
||||
|
||||
**Local (default)** - Uses all available cores automatically:
|
||||
```python
|
||||
network = grnboost2(expression_data=expr_data)
|
||||
network = grnboost2(expression_data=matrix)
|
||||
```
|
||||
|
||||
**Custom local cluster (recommended for better control):**
|
||||
**Custom local client** - Control resources:
|
||||
```python
|
||||
from dask.distributed import Client, LocalCluster
|
||||
from distributed import LocalCluster, Client
|
||||
|
||||
# Configure cluster
|
||||
cluster = LocalCluster(
|
||||
n_workers=4,
|
||||
threads_per_worker=2,
|
||||
memory_limit='4GB',
|
||||
diagnostics_port=8787 # Dashboard at http://localhost:8787
|
||||
)
|
||||
client = Client(cluster)
|
||||
local_cluster = LocalCluster(n_workers=10, memory_limit='8GB')
|
||||
client = Client(local_cluster)
|
||||
|
||||
# Run inference
|
||||
network = grnboost2(
|
||||
expression_data=expr_data,
|
||||
client_or_address=client
|
||||
)
|
||||
network = grnboost2(expression_data=matrix, client_or_address=client)
|
||||
|
||||
# Clean up
|
||||
client.close()
|
||||
cluster.close()
|
||||
local_cluster.close()
|
||||
```
|
||||
|
||||
**Distributed cluster (multi-node):**
|
||||
On scheduler node:
|
||||
```bash
|
||||
dask-scheduler --no-bokeh
|
||||
```
|
||||
|
||||
On worker nodes:
|
||||
```bash
|
||||
dask-worker scheduler-address:8786 --local-dir /tmp
|
||||
```
|
||||
|
||||
In Python:
|
||||
**Cluster computing** - Connect to remote Dask scheduler:
|
||||
```python
|
||||
from dask.distributed import Client
|
||||
from distributed import Client
|
||||
|
||||
client = Client('scheduler-address:8786')
|
||||
network = grnboost2(expression_data=expr_data, client_or_address=client)
|
||||
client = Client('tcp://scheduler:8786')
|
||||
network = grnboost2(expression_data=matrix, client_or_address=client)
|
||||
```
|
||||
|
||||
### 4. Data Preparation
|
||||
|
||||
**Common data format issues:**
|
||||
|
||||
1. **Transposed data** (genes as rows instead of columns):
|
||||
```python
|
||||
# If genes are rows, transpose
|
||||
expression_data = pd.read_csv('data.tsv', sep='\t', index_col=0).T
|
||||
```
|
||||
|
||||
2. **Missing gene names:**
|
||||
```python
|
||||
# Provide gene names if using numpy array
|
||||
network = grnboost2(
|
||||
expression_data=expr_array,
|
||||
gene_names=['Gene1', 'Gene2', 'Gene3', ...],
|
||||
seed=42
|
||||
)
|
||||
```
|
||||
|
||||
3. **Transcription factor specification:**
|
||||
```python
|
||||
# Option 1: Python list
|
||||
tf_names = ['Sox2', 'Oct4', 'Nanog', 'Klf4']
|
||||
|
||||
# Option 2: Load from file (one TF per line)
|
||||
from arboreto.utils import load_tf_names
|
||||
tf_names = load_tf_names('tf_names.txt')
|
||||
```
|
||||
|
||||
### 5. Reproducibility
|
||||
|
||||
Always specify a seed for consistent results:
|
||||
```python
|
||||
network = grnboost2(expression_data=expr_data, seed=42)
|
||||
```
|
||||
|
||||
Without a seed, results will vary between runs due to algorithm randomness.
|
||||
|
||||
### 6. Result Interpretation
|
||||
|
||||
**Understanding the output:**
|
||||
- `TF`: Transcription factor (regulator) gene
|
||||
- `target`: Target gene being regulated
|
||||
- `importance`: Strength of predicted regulatory relationship
|
||||
|
||||
**Typical post-processing:**
|
||||
```python
|
||||
# Filter by importance threshold
|
||||
high_confidence = network[network['importance'] > 10]
|
||||
|
||||
# Get top N predictions
|
||||
top_predictions = network.head(1000)
|
||||
|
||||
# Find all targets of a specific TF
|
||||
sox2_targets = network[network['TF'] == 'Sox2']
|
||||
|
||||
# Count regulations per TF
|
||||
tf_counts = network['TF'].value_counts()
|
||||
```
|
||||
**For cluster setup, performance optimization, and large-scale workflows**: `references/distributed_computing.md`
|
||||
|
||||
## Installation
|
||||
|
||||
**Recommended (via conda):**
|
||||
**Recommended (Conda)**:
|
||||
```bash
|
||||
conda install -c bioconda arboreto
|
||||
```
|
||||
|
||||
**Via pip:**
|
||||
**Alternative (pip)**:
|
||||
```bash
|
||||
pip install arboreto
|
||||
```
|
||||
|
||||
**From source:**
|
||||
```bash
|
||||
git clone https://github.com/tmoerman/arboreto.git
|
||||
cd arboreto
|
||||
pip install .
|
||||
```
|
||||
|
||||
**Dependencies:**
|
||||
- pandas
|
||||
- numpy
|
||||
- scikit-learn
|
||||
- scipy
|
||||
- dask
|
||||
- distributed
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### Issue: Bokeh error when launching Dask scheduler
|
||||
|
||||
**Error:** `TypeError: got an unexpected keyword argument 'host'`
|
||||
|
||||
**Solutions:**
|
||||
- Use `dask-scheduler --no-bokeh` to disable Bokeh
|
||||
- Upgrade to Dask distributed >= 0.20.0
|
||||
|
||||
### Issue: Workers not connecting to scheduler
|
||||
|
||||
**Symptoms:** Worker processes start but fail to establish connections
|
||||
|
||||
**Solutions:**
|
||||
- Remove `dask-worker-space` directory before restarting workers
|
||||
- Specify adequate `local_dir` when creating cluster:
|
||||
```python
|
||||
cluster = LocalCluster(
|
||||
worker_kwargs={'local_dir': '/tmp'}
|
||||
)
|
||||
```
|
||||
|
||||
### Issue: Memory errors with large datasets
|
||||
|
||||
**Solutions:**
|
||||
- Increase worker memory limits: `memory_limit='8GB'`
|
||||
- Distribute across more nodes
|
||||
- Reduce dataset size through preprocessing (e.g., feature selection)
|
||||
- Ensure expression matrix fits in available RAM
|
||||
|
||||
### Issue: Inconsistent results across runs
|
||||
|
||||
**Solution:** Always specify a `seed` parameter:
|
||||
```python
|
||||
network = grnboost2(expression_data=expr_data, seed=42)
|
||||
```
|
||||
|
||||
### Issue: Import errors or missing dependencies
|
||||
|
||||
**Solution:** Use conda installation to handle numerical library dependencies:
|
||||
**For isolated environment**:
|
||||
```bash
|
||||
conda create --name arboreto-env
|
||||
conda activate arboreto-env
|
||||
conda install -c bioconda arboreto
|
||||
```
|
||||
|
||||
## Provided Scripts
|
||||
**Dependencies**: scipy, scikit-learn, numpy, pandas, dask, distributed
|
||||
|
||||
This skill includes ready-to-use scripts for common workflows:
|
||||
## Common Use Cases
|
||||
|
||||
### scripts/basic_grn_inference.py
|
||||
### Single-Cell RNA-seq Analysis
|
||||
```python
|
||||
import pandas as pd
|
||||
from arboreto.algo import grnboost2
|
||||
|
||||
Command-line tool for standard GRN inference workflow.
|
||||
if __name__ == '__main__':
|
||||
# Load single-cell expression matrix (cells x genes)
|
||||
sc_data = pd.read_csv('scrna_counts.tsv', sep='\t')
|
||||
|
||||
**Usage:**
|
||||
```bash
|
||||
python scripts/basic_grn_inference.py expression_data.tsv \
|
||||
-t tf_names.txt \
|
||||
-o network.tsv \
|
||||
-s 42 \
|
||||
--transpose # if genes are rows
|
||||
# Infer cell-type-specific regulatory network
|
||||
network = grnboost2(expression_data=sc_data, seed=42)
|
||||
|
||||
# Filter high-confidence links
|
||||
high_confidence = network[network['importance'] > 0.5]
|
||||
high_confidence.to_csv('grn_high_confidence.tsv', sep='\t', index=False)
|
||||
```
|
||||
|
||||
**Features:**
|
||||
- Automatic data loading and validation
|
||||
- Optional TF list specification
|
||||
- Configurable output format
|
||||
- Data transposition support
|
||||
- Summary statistics
|
||||
### Bulk RNA-seq with TF Filtering
|
||||
```python
|
||||
from arboreto.utils import load_tf_names
|
||||
from arboreto.algo import grnboost2
|
||||
|
||||
### scripts/distributed_inference.py
|
||||
if __name__ == '__main__':
|
||||
# Load data
|
||||
expression_data = pd.read_csv('rnaseq_tpm.tsv', sep='\t')
|
||||
tf_names = load_tf_names('human_tfs.txt')
|
||||
|
||||
GRN inference with custom Dask cluster configuration.
|
||||
# Infer with TF restriction
|
||||
network = grnboost2(
|
||||
expression_data=expression_data,
|
||||
tf_names=tf_names,
|
||||
seed=123
|
||||
)
|
||||
|
||||
**Usage:**
|
||||
```bash
|
||||
python scripts/distributed_inference.py expression_data.tsv \
|
||||
-t tf_names.txt \
|
||||
-w 8 \
|
||||
-m 4GB \
|
||||
--threads 2 \
|
||||
--dashboard-port 8787
|
||||
network.to_csv('tf_target_network.tsv', sep='\t', index=False)
|
||||
```
|
||||
|
||||
**Features:**
|
||||
- Configurable worker count and memory limits
|
||||
- Dask dashboard integration
|
||||
- Thread configuration
|
||||
- Resource monitoring
|
||||
### Comparative Analysis (Multiple Conditions)
|
||||
```python
|
||||
from arboreto.algo import grnboost2
|
||||
|
||||
### scripts/compare_algorithms.py
|
||||
if __name__ == '__main__':
|
||||
# Infer networks for different conditions
|
||||
conditions = ['control', 'treatment_24h', 'treatment_48h']
|
||||
|
||||
Compare GRNBoost2 and GENIE3 side-by-side.
|
||||
|
||||
**Usage:**
|
||||
```bash
|
||||
python scripts/compare_algorithms.py expression_data.tsv \
|
||||
-t tf_names.txt \
|
||||
--top-n 100
|
||||
for condition in conditions:
|
||||
data = pd.read_csv(f'{condition}_expression.tsv', sep='\t')
|
||||
network = grnboost2(expression_data=data, seed=42)
|
||||
network.to_csv(f'{condition}_network.tsv', sep='\t', index=False)
|
||||
```
|
||||
|
||||
**Features:**
|
||||
- Runtime comparison
|
||||
- Network statistics
|
||||
- Prediction overlap analysis
|
||||
- Top prediction comparison
|
||||
## Output Interpretation
|
||||
|
||||
## Reference Documentation
|
||||
Arboreto returns a DataFrame with regulatory links:
|
||||
|
||||
Detailed API documentation is available in [references/api_reference.md](references/api_reference.md), including:
|
||||
- Complete parameter descriptions for all functions
|
||||
- Data format specifications
|
||||
- Distributed computing configuration
|
||||
- Performance optimization tips
|
||||
- Integration with pySCENIC
|
||||
- Comprehensive examples
|
||||
| Column | Description |
|
||||
|--------|-------------|
|
||||
| `TF` | Transcription factor (regulator) |
|
||||
| `target` | Target gene |
|
||||
| `importance` | Regulatory importance score (higher = stronger) |
|
||||
|
||||
Load this reference when:
|
||||
- Working with advanced Dask configurations
|
||||
- Troubleshooting complex deployment scenarios
|
||||
- Understanding algorithm internals
|
||||
- Optimizing performance for specific use cases
|
||||
**Filtering strategy**:
|
||||
- Top N links per target gene
|
||||
- Importance threshold (e.g., > 0.5)
|
||||
- Statistical significance testing (permutation tests)
|
||||
|
||||
## Integration with pySCENIC
|
||||
|
||||
Arboreto is the first step in the pySCENIC single-cell analysis pipeline:
|
||||
Arboreto is a core component of the SCENIC pipeline for single-cell regulatory network analysis:
|
||||
|
||||
1. **GRN Inference (arboreto)** ← This skill
|
||||
- Input: Expression matrix
|
||||
- Output: Regulatory network
|
||||
|
||||
2. **Regulon Prediction (pySCENIC)**
|
||||
- Input: Network from arboreto
|
||||
- Output: Refined regulons
|
||||
|
||||
3. **Cell Type Identification (pySCENIC)**
|
||||
- Input: Regulons
|
||||
- Output: Cell type scores
|
||||
|
||||
When working with pySCENIC, use arboreto to generate the initial network, then pass results to the pySCENIC pipeline.
|
||||
|
||||
## Best Practices
|
||||
|
||||
1. **Always use seed parameter** for reproducible research
|
||||
2. **Validate data orientation** (rows = observations, columns = genes)
|
||||
3. **Specify TF list** when known to focus inference and improve speed
|
||||
4. **Monitor with Dask dashboard** for distributed computing
|
||||
5. **Save intermediate results** to avoid re-running long computations
|
||||
6. **Filter results** by importance threshold for downstream analysis
|
||||
7. **Use GRNBoost2 by default** unless specifically requiring GENIE3
|
||||
8. **Include multiprocessing guard** (`if __name__ == '__main__':`) in all scripts
|
||||
|
||||
## Quick Reference
|
||||
|
||||
**Basic inference:**
|
||||
```python
|
||||
# Step 1: Use arboreto for GRN inference
|
||||
from arboreto.algo import grnboost2
|
||||
network = grnboost2(expression_data=expr_df, seed=42)
|
||||
network = grnboost2(expression_data=sc_data, tf_names=tf_list)
|
||||
|
||||
# Step 2: Use pySCENIC for regulon identification and activity scoring
|
||||
# (See pySCENIC documentation for downstream analysis)
|
||||
```
|
||||
|
||||
**With TF specification:**
|
||||
## Reproducibility
|
||||
|
||||
Always set a seed for reproducible results:
|
||||
```python
|
||||
network = grnboost2(expression_data=expr_df, tf_names=tf_list, seed=42)
|
||||
network = grnboost2(expression_data=matrix, seed=777)
|
||||
```
|
||||
|
||||
**With custom Dask client:**
|
||||
Run multiple seeds for robustness analysis:
|
||||
```python
|
||||
from dask.distributed import Client, LocalCluster
|
||||
cluster = LocalCluster(n_workers=4)
|
||||
client = Client(cluster)
|
||||
network = grnboost2(expression_data=expr_df, client_or_address=client, seed=42)
|
||||
client.close()
|
||||
cluster.close()
|
||||
from distributed import LocalCluster, Client
|
||||
|
||||
if __name__ == '__main__':
|
||||
client = Client(LocalCluster())
|
||||
|
||||
seeds = [42, 123, 777]
|
||||
networks = []
|
||||
|
||||
for seed in seeds:
|
||||
net = grnboost2(expression_data=matrix, client_or_address=client, seed=seed)
|
||||
networks.append(net)
|
||||
|
||||
# Combine networks and filter consensus links
|
||||
consensus = analyze_consensus(networks)
|
||||
```
|
||||
|
||||
**Load TF names:**
|
||||
```python
|
||||
from arboreto.utils import load_tf_names
|
||||
tf_names = load_tf_names('transcription_factors.txt')
|
||||
```
|
||||
## Troubleshooting
|
||||
|
||||
**Transpose data:**
|
||||
```python
|
||||
expression_df = pd.read_csv('data.tsv', sep='\t', index_col=0).T
|
||||
```
|
||||
**Memory errors**: Reduce dataset size by filtering low-variance genes or use distributed computing
|
||||
|
||||
**Slow performance**: Use GRNBoost2 instead of GENIE3, enable distributed client, filter TF list
|
||||
|
||||
**Dask errors**: Ensure `if __name__ == '__main__':` guard is present in scripts
|
||||
|
||||
**Empty results**: Check data format (genes as columns), verify TF names match gene names
|
||||
|
||||
138
scientific-packages/arboreto/references/algorithms.md
Normal file
138
scientific-packages/arboreto/references/algorithms.md
Normal file
@@ -0,0 +1,138 @@
|
||||
# GRN Inference Algorithms
|
||||
|
||||
Arboreto provides two algorithms for gene regulatory network (GRN) inference, both based on the multiple regression approach.
|
||||
|
||||
## Algorithm Overview
|
||||
|
||||
Both algorithms follow the same inference strategy:
|
||||
1. For each target gene in the dataset, train a regression model
|
||||
2. Identify the most important features (potential regulators) from the model
|
||||
3. Emit these features as candidate regulators with importance scores
|
||||
|
||||
The key difference is **computational efficiency** and the underlying regression method.
|
||||
|
||||
## GRNBoost2 (Recommended)
|
||||
|
||||
**Purpose**: Fast GRN inference for large-scale datasets using gradient boosting.
|
||||
|
||||
### When to Use
|
||||
- **Large datasets**: Tens of thousands of observations (e.g., single-cell RNA-seq)
|
||||
- **Time-constrained analysis**: Need faster results than GENIE3
|
||||
- **Default choice**: GRNBoost2 is the flagship algorithm and recommended for most use cases
|
||||
|
||||
### Technical Details
|
||||
- **Method**: Stochastic gradient boosting with early-stopping regularization
|
||||
- **Performance**: Significantly faster than GENIE3 on large datasets
|
||||
- **Output**: Same format as GENIE3 (TF-target-importance triplets)
|
||||
|
||||
### Usage
|
||||
```python
|
||||
from arboreto.algo import grnboost2
|
||||
|
||||
network = grnboost2(
|
||||
expression_data=expression_matrix,
|
||||
tf_names=tf_names,
|
||||
seed=42 # For reproducibility
|
||||
)
|
||||
```
|
||||
|
||||
### Parameters
|
||||
```python
|
||||
grnboost2(
|
||||
expression_data, # Required: pandas DataFrame or numpy array
|
||||
gene_names=None, # Required for numpy arrays
|
||||
tf_names='all', # List of TF names or 'all'
|
||||
verbose=False, # Print progress messages
|
||||
client_or_address='local', # Dask client or scheduler address
|
||||
seed=None # Random seed for reproducibility
|
||||
)
|
||||
```
|
||||
|
||||
## GENIE3
|
||||
|
||||
**Purpose**: Classic Random Forest-based GRN inference, serving as the conceptual blueprint.
|
||||
|
||||
### When to Use
|
||||
- **Smaller datasets**: When dataset size allows for longer computation
|
||||
- **Comparison studies**: When comparing with published GENIE3 results
|
||||
- **Validation**: To validate GRNBoost2 results
|
||||
|
||||
### Technical Details
|
||||
- **Method**: Random Forest or ExtraTrees regression
|
||||
- **Foundation**: Original multiple regression GRN inference strategy
|
||||
- **Trade-off**: More computationally expensive but well-established
|
||||
|
||||
### Usage
|
||||
```python
|
||||
from arboreto.algo import genie3
|
||||
|
||||
network = genie3(
|
||||
expression_data=expression_matrix,
|
||||
tf_names=tf_names,
|
||||
seed=42
|
||||
)
|
||||
```
|
||||
|
||||
### Parameters
|
||||
```python
|
||||
genie3(
|
||||
expression_data, # Required: pandas DataFrame or numpy array
|
||||
gene_names=None, # Required for numpy arrays
|
||||
tf_names='all', # List of TF names or 'all'
|
||||
verbose=False, # Print progress messages
|
||||
client_or_address='local', # Dask client or scheduler address
|
||||
seed=None # Random seed for reproducibility
|
||||
)
|
||||
```
|
||||
|
||||
## Algorithm Comparison
|
||||
|
||||
| Feature | GRNBoost2 | GENIE3 |
|
||||
|---------|-----------|--------|
|
||||
| **Speed** | Fast (optimized for large data) | Slower |
|
||||
| **Method** | Gradient boosting | Random Forest |
|
||||
| **Best for** | Large-scale data (10k+ observations) | Small-medium datasets |
|
||||
| **Output format** | Same | Same |
|
||||
| **Inference strategy** | Multiple regression | Multiple regression |
|
||||
| **Recommended** | Yes (default choice) | For comparison/validation |
|
||||
|
||||
## Advanced: Custom Regressor Parameters
|
||||
|
||||
For advanced users, pass custom scikit-learn regressor parameters:
|
||||
|
||||
```python
|
||||
from sklearn.ensemble import GradientBoostingRegressor, RandomForestRegressor
|
||||
|
||||
# Custom GRNBoost2 parameters
|
||||
custom_grnboost2 = grnboost2(
|
||||
expression_data=expression_matrix,
|
||||
regressor_type='GBM',
|
||||
regressor_kwargs={
|
||||
'n_estimators': 100,
|
||||
'max_depth': 5,
|
||||
'learning_rate': 0.1
|
||||
}
|
||||
)
|
||||
|
||||
# Custom GENIE3 parameters
|
||||
custom_genie3 = genie3(
|
||||
expression_data=expression_matrix,
|
||||
regressor_type='RF',
|
||||
regressor_kwargs={
|
||||
'n_estimators': 1000,
|
||||
'max_features': 'sqrt'
|
||||
}
|
||||
)
|
||||
```
|
||||
|
||||
## Choosing the Right Algorithm
|
||||
|
||||
**Decision guide**:
|
||||
|
||||
1. **Start with GRNBoost2** - It's faster and handles large datasets better
|
||||
2. **Use GENIE3 if**:
|
||||
- Comparing with existing GENIE3 publications
|
||||
- Dataset is small-medium sized
|
||||
- Validating GRNBoost2 results
|
||||
|
||||
Both algorithms produce comparable regulatory networks with the same output format, making them interchangeable for most analyses.
|
||||
@@ -1,271 +0,0 @@
|
||||
# Arboreto API Reference
|
||||
|
||||
This document provides comprehensive API documentation for the arboreto package, a Python library for gene regulatory network (GRN) inference.
|
||||
|
||||
## Overview
|
||||
|
||||
Arboreto enables inference of gene regulatory networks from expression data using machine learning algorithms. It supports distributed computing via Dask for scalability from single machines to multi-node clusters.
|
||||
|
||||
**Current Version:** 0.1.5
|
||||
**GitHub:** https://github.com/tmoerman/arboreto
|
||||
**License:** BSD 3-Clause
|
||||
|
||||
## Core Algorithms
|
||||
|
||||
### GRNBoost2
|
||||
|
||||
The flagship algorithm for fast gene regulatory network inference using stochastic gradient boosting.
|
||||
|
||||
**Function:** `arboreto.algo.grnboost2()`
|
||||
|
||||
**Parameters:**
|
||||
- `expression_data` (pandas.DataFrame or numpy.ndarray): Expression matrix where rows are observations (cells/samples) and columns are genes. Required.
|
||||
- `gene_names` (list, optional): List of gene names matching column order. If None, uses DataFrame column names.
|
||||
- `tf_names` (list, optional): List of transcription factor names to consider as regulators. If None, all genes are considered potential regulators.
|
||||
- `seed` (int, optional): Random seed for reproducibility. Recommended when consistent results are needed across runs.
|
||||
- `client_or_address` (dask.distributed.Client or str, optional): Custom Dask client or scheduler address for distributed computing. If None, creates a default local client.
|
||||
- `verbose` (bool, optional): Enable verbose output for debugging.
|
||||
|
||||
**Returns:**
|
||||
- pandas.DataFrame with columns `['TF', 'target', 'importance']` representing inferred regulatory links. Each row represents a regulatory relationship with an importance score.
|
||||
|
||||
**Algorithm Details:**
|
||||
- Uses stochastic gradient boosting with early-stopping regularization
|
||||
- Much faster than GENIE3, especially for large datasets (tens of thousands of observations)
|
||||
- Extracts important features from trained regression models to identify regulatory relationships
|
||||
- Recommended as the default choice for most use cases
|
||||
|
||||
**Example:**
|
||||
```python
|
||||
from arboreto.algo import grnboost2
|
||||
import pandas as pd
|
||||
|
||||
# Load expression data
|
||||
expression_matrix = pd.read_csv('expression_data.tsv', sep='\t')
|
||||
tf_list = ['TF1', 'TF2', 'TF3'] # Optional: specify TFs
|
||||
|
||||
# Run inference
|
||||
network = grnboost2(
|
||||
expression_data=expression_matrix,
|
||||
tf_names=tf_list,
|
||||
seed=42 # For reproducibility
|
||||
)
|
||||
|
||||
# Save results
|
||||
network.to_csv('output_network.tsv', sep='\t', index=False)
|
||||
```
|
||||
|
||||
### GENIE3
|
||||
|
||||
Classical gene regulatory network inference using Random Forest regression.
|
||||
|
||||
**Function:** `arboreto.algo.genie3()`
|
||||
|
||||
**Parameters:**
|
||||
Same as GRNBoost2 (see above).
|
||||
|
||||
**Returns:**
|
||||
Same format as GRNBoost2 (see above).
|
||||
|
||||
**Algorithm Details:**
|
||||
- Uses Random Forest or ExtraTrees regression models
|
||||
- Blueprint for multiple regression GRN inference strategy
|
||||
- More computationally expensive than GRNBoost2
|
||||
- Better suited for smaller datasets or when maximum accuracy is needed
|
||||
|
||||
**When to Use GENIE3 vs GRNBoost2:**
|
||||
- **Use GRNBoost2:** For large datasets, faster results, or when computational resources are limited
|
||||
- **Use GENIE3:** For smaller datasets, when following established protocols, or for comparison with published results
|
||||
|
||||
## Module Structure
|
||||
|
||||
### arboreto.algo
|
||||
|
||||
Primary module for typical users. Contains high-level inference functions.
|
||||
|
||||
**Main Functions:**
|
||||
- `grnboost2()` - Fast GRN inference using gradient boosting
|
||||
- `genie3()` - Classical GRN inference using Random Forest
|
||||
|
||||
### arboreto.core
|
||||
|
||||
Advanced module for power users. Contains low-level framework components for custom implementations.
|
||||
|
||||
**Use cases:**
|
||||
- Custom inference pipelines
|
||||
- Algorithm modifications
|
||||
- Performance tuning
|
||||
|
||||
### arboreto.utils
|
||||
|
||||
Utility functions for common data processing tasks.
|
||||
|
||||
**Key Functions:**
|
||||
- `load_tf_names(filename)` - Load transcription factor names from file
|
||||
- Reads a text file with one TF name per line
|
||||
- Returns a list of TF names
|
||||
- Example: `tf_names = load_tf_names('transcription_factors.txt')`
|
||||
|
||||
## Data Format Requirements
|
||||
|
||||
### Input Format
|
||||
|
||||
**Expression Matrix:**
|
||||
- **Format:** pandas DataFrame or numpy ndarray
|
||||
- **Orientation:** Rows = observations (cells/samples), Columns = genes
|
||||
- **Convention:** Follows scikit-learn format
|
||||
- **Gene Names:** Column names (DataFrame) or separate `gene_names` parameter
|
||||
- **Data Type:** Numeric (float or int)
|
||||
|
||||
**Common Mistake:** If data is transposed (genes as rows), use pandas to transpose:
|
||||
```python
|
||||
expression_df = pd.read_csv('data.tsv', sep='\t', index_col=0).T
|
||||
```
|
||||
|
||||
**Transcription Factor List:**
|
||||
- **Format:** Python list of strings or text file (one TF per line)
|
||||
- **Optional:** If not provided, all genes are considered potential regulators
|
||||
- **Example:** `['Sox2', 'Oct4', 'Nanog']`
|
||||
|
||||
### Output Format
|
||||
|
||||
**Network DataFrame:**
|
||||
- **Columns:**
|
||||
- `TF` (str): Transcription factor (regulator) gene name
|
||||
- `target` (str): Target gene name
|
||||
- `importance` (float): Importance score of the regulatory relationship
|
||||
- **Interpretation:** Higher importance scores indicate stronger predicted regulatory relationships
|
||||
- **Sorting:** Typically sorted by importance (descending) for prioritization
|
||||
|
||||
**Example Output:**
|
||||
```
|
||||
TF target importance
|
||||
Sox2 Gene1 15.234
|
||||
Oct4 Gene1 12.456
|
||||
Sox2 Gene2 8.901
|
||||
```
|
||||
|
||||
## Distributed Computing with Dask
|
||||
|
||||
### Local Execution (Default)
|
||||
|
||||
Arboreto automatically creates a local Dask client if none is provided:
|
||||
|
||||
```python
|
||||
network = grnboost2(expression_data=expr_matrix, tf_names=tf_list)
|
||||
```
|
||||
|
||||
### Custom Local Cluster
|
||||
|
||||
For better control over resources or multiple inferences:
|
||||
|
||||
```python
|
||||
from dask.distributed import Client, LocalCluster
|
||||
|
||||
# Configure cluster
|
||||
cluster = LocalCluster(
|
||||
n_workers=4,
|
||||
threads_per_worker=2,
|
||||
memory_limit='4GB'
|
||||
)
|
||||
client = Client(cluster)
|
||||
|
||||
# Run inference
|
||||
network = grnboost2(
|
||||
expression_data=expr_matrix,
|
||||
tf_names=tf_list,
|
||||
client_or_address=client
|
||||
)
|
||||
|
||||
# Clean up
|
||||
client.close()
|
||||
cluster.close()
|
||||
```
|
||||
|
||||
### Distributed Cluster
|
||||
|
||||
For multi-node computation:
|
||||
|
||||
**On scheduler node:**
|
||||
```bash
|
||||
dask-scheduler --no-bokeh # Use --no-bokeh to avoid Bokeh errors
|
||||
```
|
||||
|
||||
**On worker nodes:**
|
||||
```bash
|
||||
dask-worker scheduler-address:8786 --local-dir /tmp
|
||||
```
|
||||
|
||||
**In Python script:**
|
||||
```python
|
||||
from dask.distributed import Client
|
||||
|
||||
client = Client('scheduler-address:8786')
|
||||
network = grnboost2(
|
||||
expression_data=expr_matrix,
|
||||
tf_names=tf_list,
|
||||
client_or_address=client
|
||||
)
|
||||
```
|
||||
|
||||
### Dask Dashboard
|
||||
|
||||
Monitor computation progress via the Dask dashboard:
|
||||
|
||||
```python
|
||||
from dask.distributed import Client, LocalCluster
|
||||
|
||||
cluster = LocalCluster(diagnostics_port=8787)
|
||||
client = Client(cluster)
|
||||
|
||||
# Dashboard available at: http://localhost:8787
|
||||
```
|
||||
|
||||
## Reproducibility
|
||||
|
||||
To ensure reproducible results across runs:
|
||||
|
||||
```python
|
||||
network = grnboost2(
|
||||
expression_data=expr_matrix,
|
||||
tf_names=tf_list,
|
||||
seed=42 # Fixed seed ensures identical results
|
||||
)
|
||||
```
|
||||
|
||||
**Note:** Without a seed parameter, results may vary slightly between runs due to randomness in the algorithms.
|
||||
|
||||
## Performance Considerations
|
||||
|
||||
### Memory Management
|
||||
|
||||
- Expression matrices should fit in memory (RAM)
|
||||
- For very large datasets, consider:
|
||||
- Using a machine with more RAM
|
||||
- Distributing across multiple nodes
|
||||
- Preprocessing to reduce dimensionality
|
||||
|
||||
### Worker Configuration
|
||||
|
||||
- **Local execution:** Number of workers = number of CPU cores (default)
|
||||
- **Custom cluster:** Balance workers and threads based on available resources
|
||||
- **Distributed execution:** Ensure adequate `local_dir` space on worker nodes
|
||||
|
||||
### Algorithm Choice
|
||||
|
||||
- **GRNBoost2:** ~10-100x faster than GENIE3 for large datasets
|
||||
- **GENIE3:** More established but slower, better for small datasets (<10k observations)
|
||||
|
||||
## Integration with pySCENIC
|
||||
|
||||
Arboreto is a core component of the pySCENIC pipeline for single-cell RNA sequencing analysis:
|
||||
|
||||
1. **GRN Inference (Arboreto):** Infer regulatory networks using GRNBoost2
|
||||
2. **Regulon Prediction:** Prune network and identify regulons
|
||||
3. **Cell Type Identification:** Score regulons across cells
|
||||
|
||||
For pySCENIC workflows, arboreto is typically used in the first step to generate the initial regulatory network.
|
||||
|
||||
## Common Issues and Solutions
|
||||
|
||||
See the main SKILL.md for troubleshooting guidance.
|
||||
151
scientific-packages/arboreto/references/basic_inference.md
Normal file
151
scientific-packages/arboreto/references/basic_inference.md
Normal file
@@ -0,0 +1,151 @@
|
||||
# Basic GRN Inference with Arboreto
|
||||
|
||||
## Input Data Requirements
|
||||
|
||||
Arboreto requires gene expression data in one of two formats:
|
||||
|
||||
### Pandas DataFrame (Recommended)
|
||||
- **Rows**: Observations (cells, samples, conditions)
|
||||
- **Columns**: Genes (with gene names as column headers)
|
||||
- **Format**: Numeric expression values
|
||||
|
||||
Example:
|
||||
```python
|
||||
import pandas as pd
|
||||
|
||||
# Load expression matrix with genes as columns
|
||||
expression_matrix = pd.read_csv('expression_data.tsv', sep='\t')
|
||||
# Columns: ['gene1', 'gene2', 'gene3', ...]
|
||||
# Rows: observation data
|
||||
```
|
||||
|
||||
### NumPy Array
|
||||
- **Shape**: (observations, genes)
|
||||
- **Requirement**: Separately provide gene names list matching column order
|
||||
|
||||
Example:
|
||||
```python
|
||||
import numpy as np
|
||||
|
||||
expression_matrix = np.genfromtxt('expression_data.tsv', delimiter='\t', skip_header=1)
|
||||
with open('expression_data.tsv') as f:
|
||||
gene_names = [gene.strip() for gene in f.readline().split('\t')]
|
||||
|
||||
assert expression_matrix.shape[1] == len(gene_names)
|
||||
```
|
||||
|
||||
## Transcription Factors (TFs)
|
||||
|
||||
Optionally provide a list of transcription factor names to restrict regulatory inference:
|
||||
|
||||
```python
|
||||
from arboreto.utils import load_tf_names
|
||||
|
||||
# Load from file (one TF per line)
|
||||
tf_names = load_tf_names('transcription_factors.txt')
|
||||
|
||||
# Or define directly
|
||||
tf_names = ['TF1', 'TF2', 'TF3']
|
||||
```
|
||||
|
||||
If not provided, all genes are considered potential regulators.
|
||||
|
||||
## Basic Inference Workflow
|
||||
|
||||
### Using Pandas DataFrame
|
||||
|
||||
```python
|
||||
import pandas as pd
|
||||
from arboreto.utils import load_tf_names
|
||||
from arboreto.algo import grnboost2
|
||||
|
||||
if __name__ == '__main__':
|
||||
# Load expression data
|
||||
expression_matrix = pd.read_csv('expression_data.tsv', sep='\t')
|
||||
|
||||
# Load transcription factors (optional)
|
||||
tf_names = load_tf_names('tf_list.txt')
|
||||
|
||||
# Run GRN inference
|
||||
network = grnboost2(
|
||||
expression_data=expression_matrix,
|
||||
tf_names=tf_names # Optional
|
||||
)
|
||||
|
||||
# Save results
|
||||
network.to_csv('network_output.tsv', sep='\t', index=False, header=False)
|
||||
```
|
||||
|
||||
**Critical**: The `if __name__ == '__main__':` guard is required because Dask spawns new processes internally.
|
||||
|
||||
### Using NumPy Array
|
||||
|
||||
```python
|
||||
import numpy as np
|
||||
from arboreto.algo import grnboost2
|
||||
|
||||
if __name__ == '__main__':
|
||||
# Load expression matrix
|
||||
expression_matrix = np.genfromtxt('expression_data.tsv', delimiter='\t', skip_header=1)
|
||||
|
||||
# Extract gene names from header
|
||||
with open('expression_data.tsv') as f:
|
||||
gene_names = [gene.strip() for gene in f.readline().split('\t')]
|
||||
|
||||
# Verify dimensions match
|
||||
assert expression_matrix.shape[1] == len(gene_names)
|
||||
|
||||
# Run inference with explicit gene names
|
||||
network = grnboost2(
|
||||
expression_data=expression_matrix,
|
||||
gene_names=gene_names,
|
||||
tf_names=tf_names
|
||||
)
|
||||
|
||||
network.to_csv('network_output.tsv', sep='\t', index=False, header=False)
|
||||
```
|
||||
|
||||
## Output Format
|
||||
|
||||
Arboreto returns a Pandas DataFrame with three columns:
|
||||
|
||||
| Column | Description |
|
||||
|--------|-------------|
|
||||
| `TF` | Transcription factor (regulator) gene name |
|
||||
| `target` | Target gene name |
|
||||
| `importance` | Regulatory importance score (higher = stronger regulation) |
|
||||
|
||||
Example output:
|
||||
```
|
||||
TF1 gene5 0.856
|
||||
TF2 gene12 0.743
|
||||
TF1 gene8 0.621
|
||||
```
|
||||
|
||||
## Setting Random Seed
|
||||
|
||||
For reproducible results, provide a seed parameter:
|
||||
|
||||
```python
|
||||
network = grnboost2(
|
||||
expression_data=expression_matrix,
|
||||
tf_names=tf_names,
|
||||
seed=777
|
||||
)
|
||||
```
|
||||
|
||||
## Algorithm Selection
|
||||
|
||||
Use `grnboost2()` for most cases (faster, handles large datasets):
|
||||
```python
|
||||
from arboreto.algo import grnboost2
|
||||
network = grnboost2(expression_data=expression_matrix)
|
||||
```
|
||||
|
||||
Use `genie3()` for comparison or specific requirements:
|
||||
```python
|
||||
from arboreto.algo import genie3
|
||||
network = genie3(expression_data=expression_matrix)
|
||||
```
|
||||
|
||||
See `references/algorithms.md` for detailed algorithm comparison.
|
||||
242
scientific-packages/arboreto/references/distributed_computing.md
Normal file
242
scientific-packages/arboreto/references/distributed_computing.md
Normal file
@@ -0,0 +1,242 @@
|
||||
# Distributed Computing with Arboreto
|
||||
|
||||
Arboreto leverages Dask for parallelized computation, enabling efficient GRN inference from single-machine multi-core processing to multi-node cluster environments.
|
||||
|
||||
## Computation Architecture
|
||||
|
||||
GRN inference is inherently parallelizable:
|
||||
- Each target gene's regression model can be trained independently
|
||||
- Arboreto represents computation as a Dask task graph
|
||||
- Tasks are distributed across available computational resources
|
||||
|
||||
## Local Multi-Core Processing (Default)
|
||||
|
||||
By default, arboreto uses all available CPU cores on the local machine:
|
||||
|
||||
```python
|
||||
from arboreto.algo import grnboost2
|
||||
|
||||
# Automatically uses all local cores
|
||||
network = grnboost2(expression_data=expression_matrix, tf_names=tf_names)
|
||||
```
|
||||
|
||||
This is sufficient for most use cases and requires no additional configuration.
|
||||
|
||||
## Custom Local Dask Client
|
||||
|
||||
For fine-grained control over local resources, create a custom Dask client:
|
||||
|
||||
```python
|
||||
from distributed import LocalCluster, Client
|
||||
from arboreto.algo import grnboost2
|
||||
|
||||
if __name__ == '__main__':
|
||||
# Configure local cluster
|
||||
local_cluster = LocalCluster(
|
||||
n_workers=10, # Number of worker processes
|
||||
threads_per_worker=1, # Threads per worker
|
||||
memory_limit='8GB' # Memory limit per worker
|
||||
)
|
||||
|
||||
# Create client
|
||||
custom_client = Client(local_cluster)
|
||||
|
||||
# Run inference with custom client
|
||||
network = grnboost2(
|
||||
expression_data=expression_matrix,
|
||||
tf_names=tf_names,
|
||||
client_or_address=custom_client
|
||||
)
|
||||
|
||||
# Clean up
|
||||
custom_client.close()
|
||||
local_cluster.close()
|
||||
```
|
||||
|
||||
### Benefits of Custom Client
|
||||
- **Resource control**: Limit CPU and memory usage
|
||||
- **Multiple runs**: Reuse same client for different parameter sets
|
||||
- **Monitoring**: Access Dask dashboard for performance insights
|
||||
|
||||
## Multiple Inference Runs with Same Client
|
||||
|
||||
Reuse a single Dask client for multiple inference runs with different parameters:
|
||||
|
||||
```python
|
||||
from distributed import LocalCluster, Client
|
||||
from arboreto.algo import grnboost2
|
||||
|
||||
if __name__ == '__main__':
|
||||
# Initialize client once
|
||||
local_cluster = LocalCluster(n_workers=8, threads_per_worker=1)
|
||||
client = Client(local_cluster)
|
||||
|
||||
# Run multiple inferences
|
||||
network_seed1 = grnboost2(
|
||||
expression_data=expression_matrix,
|
||||
tf_names=tf_names,
|
||||
client_or_address=client,
|
||||
seed=666
|
||||
)
|
||||
|
||||
network_seed2 = grnboost2(
|
||||
expression_data=expression_matrix,
|
||||
tf_names=tf_names,
|
||||
client_or_address=client,
|
||||
seed=777
|
||||
)
|
||||
|
||||
# Different algorithms with same client
|
||||
from arboreto.algo import genie3
|
||||
network_genie3 = genie3(
|
||||
expression_data=expression_matrix,
|
||||
tf_names=tf_names,
|
||||
client_or_address=client
|
||||
)
|
||||
|
||||
# Clean up once
|
||||
client.close()
|
||||
local_cluster.close()
|
||||
```
|
||||
|
||||
## Distributed Cluster Computing
|
||||
|
||||
For very large datasets, connect to a remote Dask distributed scheduler running on a cluster:
|
||||
|
||||
### Step 1: Set Up Dask Scheduler (on cluster head node)
|
||||
```bash
|
||||
dask-scheduler
|
||||
# Output: Scheduler at tcp://10.118.224.134:8786
|
||||
```
|
||||
|
||||
### Step 2: Start Dask Workers (on cluster compute nodes)
|
||||
```bash
|
||||
dask-worker tcp://10.118.224.134:8786
|
||||
```
|
||||
|
||||
### Step 3: Connect from Client
|
||||
```python
|
||||
from distributed import Client
|
||||
from arboreto.algo import grnboost2
|
||||
|
||||
if __name__ == '__main__':
|
||||
# Connect to remote scheduler
|
||||
scheduler_address = 'tcp://10.118.224.134:8786'
|
||||
cluster_client = Client(scheduler_address)
|
||||
|
||||
# Run inference on cluster
|
||||
network = grnboost2(
|
||||
expression_data=expression_matrix,
|
||||
tf_names=tf_names,
|
||||
client_or_address=cluster_client
|
||||
)
|
||||
|
||||
cluster_client.close()
|
||||
```
|
||||
|
||||
### Cluster Configuration Best Practices
|
||||
|
||||
**Worker configuration**:
|
||||
```bash
|
||||
dask-worker tcp://scheduler:8786 \
|
||||
--nprocs 4 \ # Number of processes per node
|
||||
--nthreads 1 \ # Threads per process
|
||||
--memory-limit 16GB # Memory per process
|
||||
```
|
||||
|
||||
**For large-scale inference**:
|
||||
- Use more workers with moderate memory rather than fewer workers with large memory
|
||||
- Set `threads_per_worker=1` to avoid GIL contention in scikit-learn
|
||||
- Monitor memory usage to prevent workers from being killed
|
||||
|
||||
## Monitoring and Debugging
|
||||
|
||||
### Dask Dashboard
|
||||
|
||||
Access the Dask dashboard for real-time monitoring:
|
||||
|
||||
```python
|
||||
from distributed import Client
|
||||
|
||||
client = Client() # Prints dashboard URL
|
||||
# Dashboard available at: http://localhost:8787/status
|
||||
```
|
||||
|
||||
The dashboard shows:
|
||||
- **Task progress**: Number of tasks completed/pending
|
||||
- **Resource usage**: CPU, memory per worker
|
||||
- **Task stream**: Real-time visualization of computation
|
||||
- **Performance**: Bottleneck identification
|
||||
|
||||
### Verbose Output
|
||||
|
||||
Enable verbose logging to track inference progress:
|
||||
|
||||
```python
|
||||
network = grnboost2(
|
||||
expression_data=expression_matrix,
|
||||
tf_names=tf_names,
|
||||
verbose=True
|
||||
)
|
||||
```
|
||||
|
||||
## Performance Optimization Tips
|
||||
|
||||
### 1. Data Format
|
||||
- **Use Pandas DataFrame when possible**: More efficient than NumPy for Dask operations
|
||||
- **Reduce data size**: Filter low-variance genes before inference
|
||||
|
||||
### 2. Worker Configuration
|
||||
- **CPU-bound tasks**: Set `threads_per_worker=1`, increase `n_workers`
|
||||
- **Memory-bound tasks**: Increase `memory_limit` per worker
|
||||
|
||||
### 3. Cluster Setup
|
||||
- **Network**: Ensure high-bandwidth, low-latency network between nodes
|
||||
- **Storage**: Use shared filesystem or object storage for large datasets
|
||||
- **Scheduling**: Allocate dedicated nodes to avoid resource contention
|
||||
|
||||
### 4. Transcription Factor Filtering
|
||||
- **Limit TF list**: Providing specific TF names reduces computation
|
||||
```python
|
||||
# Full search (slow)
|
||||
network = grnboost2(expression_data=matrix)
|
||||
|
||||
# Filtered search (faster)
|
||||
network = grnboost2(expression_data=matrix, tf_names=known_tfs)
|
||||
```
|
||||
|
||||
## Example: Large-Scale Single-Cell Analysis
|
||||
|
||||
Complete workflow for processing single-cell RNA-seq data on a cluster:
|
||||
|
||||
```python
|
||||
from distributed import Client
|
||||
from arboreto.algo import grnboost2
|
||||
import pandas as pd
|
||||
|
||||
if __name__ == '__main__':
|
||||
# Connect to cluster
|
||||
client = Client('tcp://cluster-scheduler:8786')
|
||||
|
||||
# Load large single-cell dataset (50,000 cells x 20,000 genes)
|
||||
expression_data = pd.read_csv('scrnaseq_data.tsv', sep='\t')
|
||||
|
||||
# Load cell-type-specific TFs
|
||||
tf_names = pd.read_csv('tf_list.txt', header=None)[0].tolist()
|
||||
|
||||
# Run distributed inference
|
||||
network = grnboost2(
|
||||
expression_data=expression_data,
|
||||
tf_names=tf_names,
|
||||
client_or_address=client,
|
||||
verbose=True,
|
||||
seed=42
|
||||
)
|
||||
|
||||
# Save results
|
||||
network.to_csv('grn_results.tsv', sep='\t', index=False)
|
||||
|
||||
client.close()
|
||||
```
|
||||
|
||||
This approach enables analysis of datasets that would be impractical on a single machine.
|
||||
@@ -1,18 +1,18 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Basic GRN inference script using arboreto GRNBoost2.
|
||||
Basic GRN inference example using Arboreto.
|
||||
|
||||
This script demonstrates the standard workflow for gene regulatory network inference:
|
||||
1. Load expression data
|
||||
2. Optionally load transcription factor names
|
||||
3. Run GRNBoost2 inference
|
||||
4. Save results
|
||||
This script demonstrates the standard workflow for inferring gene regulatory
|
||||
networks from expression data using GRNBoost2.
|
||||
|
||||
Usage:
|
||||
python basic_grn_inference.py <expression_file> [options]
|
||||
python basic_grn_inference.py <expression_file> <output_file> [--tf-file TF_FILE] [--seed SEED]
|
||||
|
||||
Example:
|
||||
python basic_grn_inference.py expression_data.tsv -t tf_names.txt -o network.tsv
|
||||
Arguments:
|
||||
expression_file: Path to expression matrix (TSV format, genes as columns)
|
||||
output_file: Path for output network (TSV format)
|
||||
--tf-file: Optional path to transcription factors file (one per line)
|
||||
--seed: Random seed for reproducibility (default: 777)
|
||||
"""
|
||||
|
||||
import argparse
|
||||
@@ -21,90 +21,77 @@ from arboreto.algo import grnboost2
|
||||
from arboreto.utils import load_tf_names
|
||||
|
||||
|
||||
def main():
|
||||
def run_grn_inference(expression_file, output_file, tf_file=None, seed=777):
|
||||
"""
|
||||
Run GRN inference using GRNBoost2.
|
||||
|
||||
Args:
|
||||
expression_file: Path to expression matrix TSV file
|
||||
output_file: Path for output network file
|
||||
tf_file: Optional path to TF names file
|
||||
seed: Random seed for reproducibility
|
||||
"""
|
||||
print(f"Loading expression data from {expression_file}...")
|
||||
expression_data = pd.read_csv(expression_file, sep='\t')
|
||||
|
||||
print(f"Expression matrix shape: {expression_data.shape}")
|
||||
print(f"Number of genes: {expression_data.shape[1]}")
|
||||
print(f"Number of observations: {expression_data.shape[0]}")
|
||||
|
||||
# Load TF names if provided
|
||||
tf_names = 'all'
|
||||
if tf_file:
|
||||
print(f"Loading transcription factors from {tf_file}...")
|
||||
tf_names = load_tf_names(tf_file)
|
||||
print(f"Number of TFs: {len(tf_names)}")
|
||||
|
||||
# Run GRN inference
|
||||
print(f"Running GRNBoost2 with seed={seed}...")
|
||||
network = grnboost2(
|
||||
expression_data=expression_data,
|
||||
tf_names=tf_names,
|
||||
seed=seed,
|
||||
verbose=True
|
||||
)
|
||||
|
||||
# Save results
|
||||
print(f"Saving network to {output_file}...")
|
||||
network.to_csv(output_file, sep='\t', index=False, header=False)
|
||||
|
||||
print(f"Done! Network contains {len(network)} regulatory links.")
|
||||
print(f"\nTop 10 regulatory links:")
|
||||
print(network.head(10).to_string(index=False))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(
|
||||
description='Infer gene regulatory network using GRNBoost2'
|
||||
)
|
||||
parser.add_argument(
|
||||
'expression_file',
|
||||
help='Path to expression data file (TSV/CSV format)'
|
||||
help='Path to expression matrix (TSV format, genes as columns)'
|
||||
)
|
||||
parser.add_argument(
|
||||
'-t', '--tf-file',
|
||||
help='Path to file containing transcription factor names (one per line)',
|
||||
'output_file',
|
||||
help='Path for output network (TSV format)'
|
||||
)
|
||||
parser.add_argument(
|
||||
'--tf-file',
|
||||
help='Path to transcription factors file (one per line)',
|
||||
default=None
|
||||
)
|
||||
parser.add_argument(
|
||||
'-o', '--output',
|
||||
help='Output file path for network results',
|
||||
default='network_output.tsv'
|
||||
)
|
||||
parser.add_argument(
|
||||
'-s', '--seed',
|
||||
'--seed',
|
||||
help='Random seed for reproducibility (default: 777)',
|
||||
type=int,
|
||||
help='Random seed for reproducibility',
|
||||
default=42
|
||||
)
|
||||
parser.add_argument(
|
||||
'--sep',
|
||||
help='Separator for input file (default: tab)',
|
||||
default='\t'
|
||||
)
|
||||
parser.add_argument(
|
||||
'--transpose',
|
||||
action='store_true',
|
||||
help='Transpose the expression matrix (use if genes are rows)'
|
||||
default=777
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# Load expression data
|
||||
print(f"Loading expression data from {args.expression_file}...")
|
||||
expression_data = pd.read_csv(args.expression_file, sep=args.sep, index_col=0)
|
||||
|
||||
# Transpose if needed
|
||||
if args.transpose:
|
||||
print("Transposing expression matrix...")
|
||||
expression_data = expression_data.T
|
||||
|
||||
print(f"Expression data shape: {expression_data.shape}")
|
||||
print(f" Observations (rows): {expression_data.shape[0]}")
|
||||
print(f" Genes (columns): {expression_data.shape[1]}")
|
||||
|
||||
# Load TF names if provided
|
||||
tf_names = None
|
||||
if args.tf_file:
|
||||
print(f"Loading transcription factor names from {args.tf_file}...")
|
||||
tf_names = load_tf_names(args.tf_file)
|
||||
print(f" Found {len(tf_names)} transcription factors")
|
||||
else:
|
||||
print("No TF file provided. Using all genes as potential regulators.")
|
||||
|
||||
# Run GRNBoost2
|
||||
print("\nRunning GRNBoost2 inference...")
|
||||
print(" (This may take a while depending on dataset size)")
|
||||
|
||||
network = grnboost2(
|
||||
expression_data=expression_data,
|
||||
tf_names=tf_names,
|
||||
run_grn_inference(
|
||||
expression_file=args.expression_file,
|
||||
output_file=args.output_file,
|
||||
tf_file=args.tf_file,
|
||||
seed=args.seed
|
||||
)
|
||||
|
||||
print(f"\nInference complete!")
|
||||
print(f" Total regulatory links inferred: {len(network)}")
|
||||
print(f" Unique TFs: {network['TF'].nunique()}")
|
||||
print(f" Unique targets: {network['target'].nunique()}")
|
||||
|
||||
# Save results
|
||||
print(f"\nSaving results to {args.output}...")
|
||||
network.to_csv(args.output, sep='\t', index=False)
|
||||
|
||||
# Display top 10 predictions
|
||||
print("\nTop 10 predicted regulatory relationships:")
|
||||
print(network.head(10).to_string(index=False))
|
||||
|
||||
print("\nDone!")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
|
||||
@@ -1,205 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Compare GRNBoost2 and GENIE3 algorithms on the same dataset.
|
||||
|
||||
This script runs both algorithms on the same expression data and compares:
|
||||
- Runtime
|
||||
- Number of predicted links
|
||||
- Top predicted relationships
|
||||
- Overlap between predictions
|
||||
|
||||
Usage:
|
||||
python compare_algorithms.py <expression_file> [options]
|
||||
|
||||
Example:
|
||||
python compare_algorithms.py expression_data.tsv -t tf_names.txt
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import time
|
||||
import pandas as pd
|
||||
from arboreto.algo import grnboost2, genie3
|
||||
from arboreto.utils import load_tf_names
|
||||
|
||||
|
||||
def compare_networks(network1, network2, name1, name2, top_n=100):
|
||||
"""Compare two inferred networks."""
|
||||
print(f"\n{'='*60}")
|
||||
print("Network Comparison")
|
||||
print(f"{'='*60}")
|
||||
|
||||
# Basic statistics
|
||||
print(f"\n{name1} Statistics:")
|
||||
print(f" Total links: {len(network1)}")
|
||||
print(f" Unique TFs: {network1['TF'].nunique()}")
|
||||
print(f" Unique targets: {network1['target'].nunique()}")
|
||||
print(f" Importance range: [{network1['importance'].min():.3f}, {network1['importance'].max():.3f}]")
|
||||
|
||||
print(f"\n{name2} Statistics:")
|
||||
print(f" Total links: {len(network2)}")
|
||||
print(f" Unique TFs: {network2['TF'].nunique()}")
|
||||
print(f" Unique targets: {network2['target'].nunique()}")
|
||||
print(f" Importance range: [{network2['importance'].min():.3f}, {network2['importance'].max():.3f}]")
|
||||
|
||||
# Compare top predictions
|
||||
print(f"\nTop {top_n} Predictions Overlap:")
|
||||
|
||||
# Create edge sets for top N predictions
|
||||
top_edges1 = set(
|
||||
zip(network1.head(top_n)['TF'], network1.head(top_n)['target'])
|
||||
)
|
||||
top_edges2 = set(
|
||||
zip(network2.head(top_n)['TF'], network2.head(top_n)['target'])
|
||||
)
|
||||
|
||||
# Calculate overlap
|
||||
overlap = top_edges1 & top_edges2
|
||||
only_net1 = top_edges1 - top_edges2
|
||||
only_net2 = top_edges2 - top_edges1
|
||||
|
||||
overlap_pct = (len(overlap) / top_n) * 100
|
||||
|
||||
print(f" Shared edges: {len(overlap)} ({overlap_pct:.1f}%)")
|
||||
print(f" Only in {name1}: {len(only_net1)}")
|
||||
print(f" Only in {name2}: {len(only_net2)}")
|
||||
|
||||
# Show some example overlapping edges
|
||||
if overlap:
|
||||
print(f"\nExample overlapping predictions:")
|
||||
for i, (tf, target) in enumerate(list(overlap)[:5], 1):
|
||||
print(f" {i}. {tf} -> {target}")
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(
|
||||
description='Compare GRNBoost2 and GENIE3 algorithms'
|
||||
)
|
||||
parser.add_argument(
|
||||
'expression_file',
|
||||
help='Path to expression data file (TSV/CSV format)'
|
||||
)
|
||||
parser.add_argument(
|
||||
'-t', '--tf-file',
|
||||
help='Path to file containing transcription factor names (one per line)',
|
||||
default=None
|
||||
)
|
||||
parser.add_argument(
|
||||
'--grnboost2-output',
|
||||
help='Output file path for GRNBoost2 results',
|
||||
default='grnboost2_network.tsv'
|
||||
)
|
||||
parser.add_argument(
|
||||
'--genie3-output',
|
||||
help='Output file path for GENIE3 results',
|
||||
default='genie3_network.tsv'
|
||||
)
|
||||
parser.add_argument(
|
||||
'-s', '--seed',
|
||||
type=int,
|
||||
help='Random seed for reproducibility',
|
||||
default=42
|
||||
)
|
||||
parser.add_argument(
|
||||
'--sep',
|
||||
help='Separator for input file (default: tab)',
|
||||
default='\t'
|
||||
)
|
||||
parser.add_argument(
|
||||
'--transpose',
|
||||
action='store_true',
|
||||
help='Transpose the expression matrix (use if genes are rows)'
|
||||
)
|
||||
parser.add_argument(
|
||||
'--top-n',
|
||||
type=int,
|
||||
help='Number of top predictions to compare (default: 100)',
|
||||
default=100
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# Load expression data
|
||||
print(f"Loading expression data from {args.expression_file}...")
|
||||
expression_data = pd.read_csv(args.expression_file, sep=args.sep, index_col=0)
|
||||
|
||||
# Transpose if needed
|
||||
if args.transpose:
|
||||
print("Transposing expression matrix...")
|
||||
expression_data = expression_data.T
|
||||
|
||||
print(f"Expression data shape: {expression_data.shape}")
|
||||
print(f" Observations (rows): {expression_data.shape[0]}")
|
||||
print(f" Genes (columns): {expression_data.shape[1]}")
|
||||
|
||||
# Load TF names if provided
|
||||
tf_names = None
|
||||
if args.tf_file:
|
||||
print(f"Loading transcription factor names from {args.tf_file}...")
|
||||
tf_names = load_tf_names(args.tf_file)
|
||||
print(f" Found {len(tf_names)} transcription factors")
|
||||
else:
|
||||
print("No TF file provided. Using all genes as potential regulators.")
|
||||
|
||||
# Run GRNBoost2
|
||||
print("\n" + "="*60)
|
||||
print("Running GRNBoost2...")
|
||||
print("="*60)
|
||||
start_time = time.time()
|
||||
|
||||
grnboost2_network = grnboost2(
|
||||
expression_data=expression_data,
|
||||
tf_names=tf_names,
|
||||
seed=args.seed
|
||||
)
|
||||
|
||||
grnboost2_time = time.time() - start_time
|
||||
print(f"GRNBoost2 completed in {grnboost2_time:.2f} seconds")
|
||||
|
||||
# Save GRNBoost2 results
|
||||
grnboost2_network.to_csv(args.grnboost2_output, sep='\t', index=False)
|
||||
print(f"Results saved to {args.grnboost2_output}")
|
||||
|
||||
# Run GENIE3
|
||||
print("\n" + "="*60)
|
||||
print("Running GENIE3...")
|
||||
print("="*60)
|
||||
start_time = time.time()
|
||||
|
||||
genie3_network = genie3(
|
||||
expression_data=expression_data,
|
||||
tf_names=tf_names,
|
||||
seed=args.seed
|
||||
)
|
||||
|
||||
genie3_time = time.time() - start_time
|
||||
print(f"GENIE3 completed in {genie3_time:.2f} seconds")
|
||||
|
||||
# Save GENIE3 results
|
||||
genie3_network.to_csv(args.genie3_output, sep='\t', index=False)
|
||||
print(f"Results saved to {args.genie3_output}")
|
||||
|
||||
# Compare runtimes
|
||||
print("\n" + "="*60)
|
||||
print("Runtime Comparison")
|
||||
print("="*60)
|
||||
print(f"GRNBoost2: {grnboost2_time:.2f} seconds")
|
||||
print(f"GENIE3: {genie3_time:.2f} seconds")
|
||||
speedup = genie3_time / grnboost2_time
|
||||
print(f"Speedup: {speedup:.2f}x (GRNBoost2 is {speedup:.2f}x faster)")
|
||||
|
||||
# Compare networks
|
||||
compare_networks(
|
||||
grnboost2_network,
|
||||
genie3_network,
|
||||
"GRNBoost2",
|
||||
"GENIE3",
|
||||
top_n=args.top_n
|
||||
)
|
||||
|
||||
print("\n" + "="*60)
|
||||
print("Comparison complete!")
|
||||
print("="*60)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
@@ -1,157 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Distributed GRN inference script using arboreto with custom Dask configuration.
|
||||
|
||||
This script demonstrates how to use arboreto with a custom Dask LocalCluster
|
||||
for better control over computational resources.
|
||||
|
||||
Usage:
|
||||
python distributed_inference.py <expression_file> [options]
|
||||
|
||||
Example:
|
||||
python distributed_inference.py expression_data.tsv -t tf_names.txt -w 8 -m 4GB
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import pandas as pd
|
||||
from dask.distributed import Client, LocalCluster
|
||||
from arboreto.algo import grnboost2
|
||||
from arboreto.utils import load_tf_names
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(
|
||||
description='Distributed GRN inference using GRNBoost2 with custom Dask cluster'
|
||||
)
|
||||
parser.add_argument(
|
||||
'expression_file',
|
||||
help='Path to expression data file (TSV/CSV format)'
|
||||
)
|
||||
parser.add_argument(
|
||||
'-t', '--tf-file',
|
||||
help='Path to file containing transcription factor names (one per line)',
|
||||
default=None
|
||||
)
|
||||
parser.add_argument(
|
||||
'-o', '--output',
|
||||
help='Output file path for network results',
|
||||
default='network_output.tsv'
|
||||
)
|
||||
parser.add_argument(
|
||||
'-s', '--seed',
|
||||
type=int,
|
||||
help='Random seed for reproducibility',
|
||||
default=42
|
||||
)
|
||||
parser.add_argument(
|
||||
'-w', '--workers',
|
||||
type=int,
|
||||
help='Number of Dask workers',
|
||||
default=4
|
||||
)
|
||||
parser.add_argument(
|
||||
'-m', '--memory-limit',
|
||||
help='Memory limit per worker (e.g., "4GB", "2000MB")',
|
||||
default='4GB'
|
||||
)
|
||||
parser.add_argument(
|
||||
'--threads',
|
||||
type=int,
|
||||
help='Threads per worker',
|
||||
default=2
|
||||
)
|
||||
parser.add_argument(
|
||||
'--dashboard-port',
|
||||
type=int,
|
||||
help='Port for Dask dashboard (default: 8787)',
|
||||
default=8787
|
||||
)
|
||||
parser.add_argument(
|
||||
'--sep',
|
||||
help='Separator for input file (default: tab)',
|
||||
default='\t'
|
||||
)
|
||||
parser.add_argument(
|
||||
'--transpose',
|
||||
action='store_true',
|
||||
help='Transpose the expression matrix (use if genes are rows)'
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# Load expression data
|
||||
print(f"Loading expression data from {args.expression_file}...")
|
||||
expression_data = pd.read_csv(args.expression_file, sep=args.sep, index_col=0)
|
||||
|
||||
# Transpose if needed
|
||||
if args.transpose:
|
||||
print("Transposing expression matrix...")
|
||||
expression_data = expression_data.T
|
||||
|
||||
print(f"Expression data shape: {expression_data.shape}")
|
||||
print(f" Observations (rows): {expression_data.shape[0]}")
|
||||
print(f" Genes (columns): {expression_data.shape[1]}")
|
||||
|
||||
# Load TF names if provided
|
||||
tf_names = None
|
||||
if args.tf_file:
|
||||
print(f"Loading transcription factor names from {args.tf_file}...")
|
||||
tf_names = load_tf_names(args.tf_file)
|
||||
print(f" Found {len(tf_names)} transcription factors")
|
||||
else:
|
||||
print("No TF file provided. Using all genes as potential regulators.")
|
||||
|
||||
# Set up Dask cluster
|
||||
print(f"\nSetting up Dask LocalCluster...")
|
||||
print(f" Workers: {args.workers}")
|
||||
print(f" Threads per worker: {args.threads}")
|
||||
print(f" Memory limit per worker: {args.memory_limit}")
|
||||
print(f" Dashboard: http://localhost:{args.dashboard_port}")
|
||||
|
||||
cluster = LocalCluster(
|
||||
n_workers=args.workers,
|
||||
threads_per_worker=args.threads,
|
||||
memory_limit=args.memory_limit,
|
||||
diagnostics_port=args.dashboard_port
|
||||
)
|
||||
client = Client(cluster)
|
||||
|
||||
print(f"\nDask cluster ready!")
|
||||
print(f" Dashboard available at: {client.dashboard_link}")
|
||||
|
||||
# Run GRNBoost2
|
||||
print("\nRunning GRNBoost2 inference with distributed computation...")
|
||||
print(" (Monitor progress via the Dask dashboard)")
|
||||
|
||||
try:
|
||||
network = grnboost2(
|
||||
expression_data=expression_data,
|
||||
tf_names=tf_names,
|
||||
seed=args.seed,
|
||||
client_or_address=client
|
||||
)
|
||||
|
||||
print(f"\nInference complete!")
|
||||
print(f" Total regulatory links inferred: {len(network)}")
|
||||
print(f" Unique TFs: {network['TF'].nunique()}")
|
||||
print(f" Unique targets: {network['target'].nunique()}")
|
||||
|
||||
# Save results
|
||||
print(f"\nSaving results to {args.output}...")
|
||||
network.to_csv(args.output, sep='\t', index=False)
|
||||
|
||||
# Display top 10 predictions
|
||||
print("\nTop 10 predicted regulatory relationships:")
|
||||
print(network.head(10).to_string(index=False))
|
||||
|
||||
print("\nDone!")
|
||||
|
||||
finally:
|
||||
# Clean up Dask resources
|
||||
print("\nClosing Dask cluster...")
|
||||
client.close()
|
||||
cluster.close()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
Reference in New Issue
Block a user