Files
claude-scientific-skills/scientific-packages/anndata/references/workflows_best_practices.md
Timothy Kassis 152d0d54de Initial commit
2025-10-19 14:01:29 -07:00

439 lines
9.6 KiB
Markdown

# AnnData Workflows and Best Practices
## Common Workflows
### 1. Single-Cell RNA-seq Analysis Workflow
#### Loading Data
```python
import anndata as ad
import numpy as np
import pandas as pd
# Load from 10X format
adata = ad.read_mtx('matrix.mtx')
adata.var_names = pd.read_csv('genes.tsv', sep='\t', header=None)[0]
adata.obs_names = pd.read_csv('barcodes.tsv', sep='\t', header=None)[0]
# Or load from pre-processed h5ad
adata = ad.read_h5ad('preprocessed_data.h5ad')
```
#### Quality Control
```python
# Calculate QC metrics
adata.obs['n_genes'] = (adata.X > 0).sum(axis=1)
adata.obs['total_counts'] = adata.X.sum(axis=1)
# Filter cells
adata = adata[adata.obs.n_genes > 200]
adata = adata[adata.obs.total_counts < 10000]
# Filter genes
min_cells = 3
adata = adata[:, (adata.X > 0).sum(axis=0) >= min_cells]
```
#### Normalization and Preprocessing
```python
# Store raw counts
adata.layers['counts'] = adata.X.copy()
# Normalize
adata.X = adata.X / adata.obs.total_counts.values[:, None] * 1e4
# Log transform
adata.layers['log1p'] = np.log1p(adata.X)
adata.X = adata.layers['log1p']
# Identify highly variable genes
gene_variance = adata.X.var(axis=0)
adata.var['highly_variable'] = gene_variance > np.percentile(gene_variance, 90)
```
#### Dimensionality Reduction
```python
# PCA
from sklearn.decomposition import PCA
pca = PCA(n_components=50)
adata.obsm['X_pca'] = pca.fit_transform(adata.X)
# Store PCA variance
adata.uns['pca'] = {'variance_ratio': pca.explained_variance_ratio_}
# UMAP
from umap import UMAP
umap = UMAP(n_components=2)
adata.obsm['X_umap'] = umap.fit_transform(adata.obsm['X_pca'])
```
#### Clustering
```python
# Store cluster assignments
adata.obs['clusters'] = pd.Categorical(['cluster_0', 'cluster_1', ...])
# Store cluster centroids
centroids = np.array([...])
adata.varm['cluster_centroids'] = centroids
```
#### Save Results
```python
# Save complete analysis
adata.write('analyzed_data.h5ad', compression='gzip')
```
### 2. Batch Integration Workflow
```python
import anndata as ad
# Load multiple batches
batch1 = ad.read_h5ad('batch1.h5ad')
batch2 = ad.read_h5ad('batch2.h5ad')
batch3 = ad.read_h5ad('batch3.h5ad')
# Concatenate with batch labels
adata = ad.concat(
[batch1, batch2, batch3],
axis=0,
label='batch',
keys=['batch1', 'batch2', 'batch3'],
index_unique='-'
)
# Batch effect correction would go here
# (using external tools like Harmony, Scanorama, etc.)
# Store corrected embeddings
adata.obsm['X_pca_corrected'] = corrected_pca
adata.obsm['X_umap_corrected'] = corrected_umap
```
### 3. Memory-Efficient Large Dataset Workflow
```python
import anndata as ad
# Read in backed mode
adata = ad.read_h5ad('large_dataset.h5ad', backed='r')
# Check backing status
print(f"Is backed: {adata.isbacked}")
print(f"File: {adata.filename}")
# Work with chunks
for chunk in adata.chunk_X(chunk_size=1000):
# Process chunk
result = process_chunk(chunk)
# Close file when done
adata.file.close()
```
### 4. Multi-Dataset Comparison Workflow
```python
import anndata as ad
# Load datasets
datasets = {
'study1': ad.read_h5ad('study1.h5ad'),
'study2': ad.read_h5ad('study2.h5ad'),
'study3': ad.read_h5ad('study3.h5ad')
}
# Outer join to keep all genes
combined = ad.concat(
list(datasets.values()),
axis=0,
join='outer',
label='study',
keys=list(datasets.keys()),
merge='first'
)
# Handle missing data
combined.X[np.isnan(combined.X)] = 0
# Add dataset-specific metadata
combined.uns['datasets'] = {
'study1': {'date': '2023-01', 'n_samples': datasets['study1'].n_obs},
'study2': {'date': '2023-06', 'n_samples': datasets['study2'].n_obs},
'study3': {'date': '2024-01', 'n_samples': datasets['study3'].n_obs}
}
```
## Best Practices
### Memory Management
#### Use Sparse Matrices
```python
from scipy.sparse import csr_matrix
# Convert to sparse if data is sparse
if density < 0.3: # Less than 30% non-zero
adata.X = csr_matrix(adata.X)
```
#### Use Backed Mode for Large Files
```python
# Read with backing
adata = ad.read_h5ad('large_file.h5ad', backed='r')
# Only load what you need
subset = adata[:1000, :500].copy() # Now in memory
```
#### Convert Strings to Categoricals
```python
# Efficient storage for repeated strings
adata.strings_to_categoricals()
# Or manually
adata.obs['cell_type'] = pd.Categorical(adata.obs['cell_type'])
```
### Data Organization
#### Use Layers for Different Representations
```python
# Store multiple versions of the data
adata.layers['counts'] = raw_counts
adata.layers['normalized'] = normalized_data
adata.layers['log1p'] = log_transformed_data
adata.layers['scaled'] = scaled_data
```
#### Use obsm/varm for Multi-Dimensional Annotations
```python
# Embeddings
adata.obsm['X_pca'] = pca_coordinates
adata.obsm['X_umap'] = umap_coordinates
adata.obsm['X_tsne'] = tsne_coordinates
# Gene loadings
adata.varm['PCs'] = principal_components
```
#### Use uns for Analysis Metadata
```python
# Store parameters
adata.uns['preprocessing'] = {
'normalization': 'TPM',
'min_genes': 200,
'min_cells': 3,
'date': '2024-01-15'
}
# Store analysis results
adata.uns['differential_expression'] = {
'method': 't-test',
'p_value_threshold': 0.05
}
```
### Subsetting and Views
#### Understand View vs Copy
```python
# Subsetting returns a view
subset = adata[adata.obs.cell_type == 'B cell'] # View
print(subset.is_view) # True
# Views are memory efficient but modifications affect original
subset.obs['new_column'] = value # Modifies original adata
# Create independent copy when needed
subset_copy = adata[adata.obs.cell_type == 'B cell'].copy()
```
#### Chain Operations Efficiently
```python
# Bad - creates multiple intermediate views
temp1 = adata[adata.obs.batch == 'batch1']
temp2 = temp1[temp1.obs.n_genes > 200]
result = temp2[:, temp2.var.highly_variable].copy()
# Good - chain operations
result = adata[
(adata.obs.batch == 'batch1') & (adata.obs.n_genes > 200),
adata.var.highly_variable
].copy()
```
### File I/O
#### Use Compression
```python
# Save with compression
adata.write('data.h5ad', compression='gzip')
```
#### Choose the Right Format
```python
# H5AD for general use (good compression, fast)
adata.write_h5ad('data.h5ad')
# Zarr for cloud storage and parallel access
adata.write_zarr('data.zarr')
# Loom for compatibility with other tools
adata.write_loom('data.loom')
```
#### Close File Connections
```python
# Use context manager pattern
adata = ad.read_h5ad('file.h5ad', backed='r')
try:
# Work with data
process(adata)
finally:
adata.file.close()
```
### Concatenation
#### Choose Appropriate Join Strategy
```python
# Inner join - only common features (safe, may lose data)
combined = ad.concat([adata1, adata2], join='inner')
# Outer join - all features (keeps all data, may introduce zeros)
combined = ad.concat([adata1, adata2], join='outer')
```
#### Track Data Sources
```python
# Add source labels
combined = ad.concat(
[adata1, adata2, adata3],
label='dataset',
keys=['exp1', 'exp2', 'exp3']
)
# Make indices unique
combined = ad.concat(
[adata1, adata2, adata3],
index_unique='-'
)
```
#### Handle Variable-Specific Metadata
```python
# Use merge strategy for var annotations
combined = ad.concat(
[adata1, adata2],
merge='same', # Keep only identical annotations
join='outer'
)
```
### Naming Conventions
#### Use Consistent Naming
```python
# Embeddings: X_<method>
adata.obsm['X_pca']
adata.obsm['X_umap']
adata.obsm['X_tsne']
# Layers: descriptive names
adata.layers['counts']
adata.layers['log1p']
adata.layers['scaled']
# Observations: snake_case
adata.obs['cell_type']
adata.obs['n_genes']
adata.obs['total_counts']
```
#### Make Indices Unique
```python
# Ensure unique names
adata.obs_names_make_unique()
adata.var_names_make_unique()
```
### Error Handling
#### Validate Data Structure
```python
# Check dimensions
assert adata.n_obs > 0, "No observations in data"
assert adata.n_vars > 0, "No variables in data"
# Check for NaN values
if np.isnan(adata.X).any():
print("Warning: NaN values detected")
# Check for negative values in count data
if (adata.X < 0).any():
print("Warning: Negative values in count data")
```
#### Handle Missing Data
```python
# Check for missing annotations
if adata.obs['cell_type'].isna().any():
print("Warning: Missing cell type annotations")
# Fill or remove
adata = adata[~adata.obs['cell_type'].isna()]
```
## Common Pitfalls
### 1. Forgetting to Copy Views
```python
# BAD - modifies original
subset = adata[adata.obs.condition == 'treated']
subset.X = transformed_data # Changes original adata!
# GOOD
subset = adata[adata.obs.condition == 'treated'].copy()
subset.X = transformed_data # Only changes subset
```
### 2. Mixing Backed and In-Memory Operations
```python
# BAD - trying to modify backed data
adata = ad.read_h5ad('file.h5ad', backed='r')
adata.X[0, 0] = 100 # Error: can't modify backed data
# GOOD - load to memory first
adata = ad.read_h5ad('file.h5ad', backed='r')
adata = adata.to_memory()
adata.X[0, 0] = 100 # Works
```
### 3. Not Using Categoricals for Metadata
```python
# BAD - stores as strings (memory inefficient)
adata.obs['cell_type'] = ['B cell', 'T cell', ...] * 1000
# GOOD - use categorical
adata.obs['cell_type'] = pd.Categorical(['B cell', 'T cell', ...] * 1000)
```
### 4. Incorrect Concatenation Axis
```python
# Concatenating observations (cells)
combined = ad.concat([adata1, adata2], axis=0) # Correct
# Concatenating variables (genes) - rare
combined = ad.concat([adata1, adata2], axis=1) # Less common
```
### 5. Not Preserving Raw Data
```python
# BAD - loses original data
adata.X = normalized_data
# GOOD - preserve original
adata.layers['counts'] = adata.X.copy()
adata.X = normalized_data
```