mirror of
https://github.com/K-Dense-AI/claude-scientific-skills.git
synced 2026-01-26 16:58:56 +08:00
- Updated SKILL.md in citation management to include best practices for identifying seminal and high-impact papers, emphasizing citation count thresholds, venue quality tiers, and author reputation indicators. - Expanded literature review SKILL.md to prioritize high-impact papers, detailing citation metrics, journal tiers, and author reputation assessment. - Added comprehensive evaluation strategies for paper impact and quality in literature_search_strategies.md, including citation count significance and journal impact factor guidance. - Improved research lookup scripts to prioritize results based on citation count, venue prestige, and author reputation, enhancing the quality of research outputs.
208 lines
4.7 KiB
Markdown
208 lines
4.7 KiB
Markdown
# Scientific Schematics - Quick Reference
|
|
|
|
**How it works:** Describe your diagram → Nano Banana Pro generates it automatically
|
|
|
|
## Setup (One-Time)
|
|
|
|
```bash
|
|
# Get API key from https://openrouter.ai/keys
|
|
export OPENROUTER_API_KEY='sk-or-v1-your_key_here'
|
|
|
|
# Add to shell profile for persistence
|
|
echo 'export OPENROUTER_API_KEY="sk-or-v1-your_key"' >> ~/.bashrc # or ~/.zshrc
|
|
```
|
|
|
|
## Basic Usage
|
|
|
|
```bash
|
|
# Describe your diagram, Nano Banana Pro creates it
|
|
python scripts/generate_schematic.py "your diagram description" -o output.png
|
|
|
|
# That's it! Automatic:
|
|
# - Iterative refinement (3 rounds)
|
|
# - Quality review and improvement
|
|
# - Publication-ready output
|
|
```
|
|
|
|
## Common Examples
|
|
|
|
### CONSORT Flowchart
|
|
```bash
|
|
python scripts/generate_schematic.py \
|
|
"CONSORT flow: screened n=500, excluded n=150, randomized n=350" \
|
|
-o consort.png
|
|
```
|
|
|
|
### Neural Network
|
|
```bash
|
|
python scripts/generate_schematic.py \
|
|
"Transformer architecture with encoder and decoder stacks" \
|
|
-o transformer.png
|
|
```
|
|
|
|
### Biological Pathway
|
|
```bash
|
|
python scripts/generate_schematic.py \
|
|
"MAPK pathway: EGFR → RAS → RAF → MEK → ERK" \
|
|
-o mapk.png
|
|
```
|
|
|
|
### Circuit Diagram
|
|
```bash
|
|
python scripts/generate_schematic.py \
|
|
"Op-amp circuit with 1kΩ resistor and 10µF capacitor" \
|
|
-o circuit.png
|
|
```
|
|
|
|
## Command Options
|
|
|
|
| Option | Description | Example |
|
|
|--------|-------------|---------|
|
|
| `-o, --output` | Output file path | `-o figures/diagram.png` |
|
|
| `--iterations N` | Number of refinements (1-2) | `--iterations 2` |
|
|
| `-v, --verbose` | Show detailed output | `-v` |
|
|
| `--api-key KEY` | Provide API key | `--api-key sk-or-v1-...` |
|
|
|
|
## Prompt Tips
|
|
|
|
### ✓ Good Prompts (Specific)
|
|
- "CONSORT flowchart with screening (n=500), exclusion (n=150), randomization (n=350)"
|
|
- "Transformer architecture: encoder on left with 6 layers, decoder on right, cross-attention connections"
|
|
- "MAPK signaling: receptor → RAS → RAF → MEK → ERK → nucleus, label each phosphorylation"
|
|
|
|
### ✗ Avoid (Too Vague)
|
|
- "Make a flowchart"
|
|
- "Neural network"
|
|
- "Pathway diagram"
|
|
|
|
## Output Files
|
|
|
|
For input `diagram.png`, you get:
|
|
- `diagram_v1.png` - First iteration
|
|
- `diagram_v2.png` - Second iteration
|
|
- `diagram_v3.png` - Final iteration
|
|
- `diagram.png` - Copy of final
|
|
- `diagram_review_log.json` - Quality scores and critiques
|
|
|
|
## Review Log
|
|
|
|
```json
|
|
{
|
|
"iterations": [
|
|
{
|
|
"iteration": 1,
|
|
"score": 7.0,
|
|
"critique": "Good start. Font too small..."
|
|
},
|
|
{
|
|
"iteration": 2,
|
|
"score": 8.5,
|
|
"critique": "Much improved. Minor spacing issues..."
|
|
},
|
|
{
|
|
"iteration": 3,
|
|
"score": 9.5,
|
|
"critique": "Excellent. Publication ready."
|
|
}
|
|
],
|
|
"final_score": 9.5
|
|
}
|
|
```
|
|
|
|
## Python API
|
|
|
|
```python
|
|
from scripts.generate_schematic_ai import ScientificSchematicGenerator
|
|
|
|
# Initialize
|
|
gen = ScientificSchematicGenerator(api_key="your_key")
|
|
|
|
# Generate
|
|
results = gen.generate_iterative(
|
|
user_prompt="diagram description",
|
|
output_path="output.png",
|
|
iterations=2
|
|
)
|
|
|
|
# Check quality
|
|
print(f"Score: {results['final_score']}/10")
|
|
```
|
|
|
|
## Troubleshooting
|
|
|
|
### API Key Not Found
|
|
```bash
|
|
# Check if set
|
|
echo $OPENROUTER_API_KEY
|
|
|
|
# Set it
|
|
export OPENROUTER_API_KEY='your_key'
|
|
```
|
|
|
|
### Import Error
|
|
```bash
|
|
# Install requests
|
|
pip install requests
|
|
```
|
|
|
|
### Low Quality Score
|
|
- Make prompt more specific
|
|
- Include layout details (left-to-right, top-to-bottom)
|
|
- Specify label requirements
|
|
- Increase iterations: `--iterations 2`
|
|
|
|
## Testing
|
|
|
|
```bash
|
|
# Verify installation
|
|
python test_ai_generation.py
|
|
|
|
# Should show: "6/6 tests passed"
|
|
```
|
|
|
|
## Cost
|
|
|
|
Typical cost per diagram (max 2 iterations):
|
|
- Simple (1 iteration): $0.05-0.15
|
|
- Complex (2 iterations): $0.10-0.30
|
|
|
|
## How Nano Banana Pro Works
|
|
|
|
**Simply describe your diagram in natural language:**
|
|
- ✓ No coding required
|
|
- ✓ No templates needed
|
|
- ✓ No manual drawing
|
|
- ✓ Automatic quality review
|
|
- ✓ Publication-ready output
|
|
- ✓ Works for any diagram type
|
|
|
|
**Just describe what you want, and it's generated automatically.**
|
|
|
|
## Getting Help
|
|
|
|
```bash
|
|
# Show help
|
|
python scripts/generate_schematic.py --help
|
|
|
|
# Verbose mode for debugging
|
|
python scripts/generate_schematic.py "diagram" -o out.png -v
|
|
```
|
|
|
|
## Quick Start Checklist
|
|
|
|
- [ ] Set `OPENROUTER_API_KEY` environment variable
|
|
- [ ] Run `python test_ai_generation.py` (should pass 6/6)
|
|
- [ ] Try: `python scripts/generate_schematic.py "test diagram" -o test.png`
|
|
- [ ] Review output files (test_v1.png, v2, v3, review_log.json)
|
|
- [ ] Read SKILL.md for detailed documentation
|
|
- [ ] Check README.md for examples
|
|
|
|
## Resources
|
|
|
|
- Full documentation: `SKILL.md`
|
|
- Detailed guide: `README.md`
|
|
- Implementation details: `IMPLEMENTATION_SUMMARY.md`
|
|
- Example script: `example_usage.sh`
|
|
- Get API key: https://openrouter.ai/keys
|
|
|