mirror of
https://github.com/K-Dense-AI/claude-scientific-skills.git
synced 2026-01-26 16:58:56 +08:00
416 lines
11 KiB
Markdown
416 lines
11 KiB
Markdown
---
|
|
name: arboreto
|
|
description: "Gene regulatory network inference with GRNBoost2/GENIE3 algorithms. Infer TF-target relationships from expression data, scalable with Dask, for scRNA-seq and GRN analysis."
|
|
---
|
|
|
|
# Arboreto - Gene Regulatory Network Inference
|
|
|
|
## Overview
|
|
|
|
Arboreto is a Python library for inferring gene regulatory networks (GRNs) from gene expression data using machine learning algorithms. It enables scalable GRN inference from single machines to multi-node clusters using Dask for distributed computing. The skill provides comprehensive support for both GRNBoost2 (fast gradient boosting) and GENIE3 (Random Forest) algorithms.
|
|
|
|
## When to Use This Skill
|
|
|
|
This skill should be used when:
|
|
- Inferring regulatory relationships between genes from expression data
|
|
- Analyzing single-cell or bulk RNA-seq data to identify transcription factor targets
|
|
- Building the GRN inference component of a pySCENIC pipeline
|
|
- Comparing GRNBoost2 and GENIE3 algorithm performance
|
|
- Setting up distributed computing for large-scale genomic analyses
|
|
- Troubleshooting arboreto installation or runtime issues
|
|
|
|
## Core Capabilities
|
|
|
|
### 1. Basic GRN Inference
|
|
|
|
For standard gene regulatory network inference tasks:
|
|
|
|
**Key considerations:**
|
|
- Expression data format: Rows = observations (cells/samples), Columns = genes
|
|
- If data has genes as rows, transpose it first: `expression_df.T`
|
|
- Always include `seed` parameter for reproducible results
|
|
- Transcription factor list is optional but recommended for focused analysis
|
|
|
|
**Typical workflow:**
|
|
```python
|
|
import pandas as pd
|
|
from arboreto.algo import grnboost2
|
|
from arboreto.utils import load_tf_names
|
|
|
|
# Load expression data (ensure correct orientation)
|
|
expression_data = pd.read_csv('expression_data.tsv', sep='\t', index_col=0)
|
|
|
|
# Optional: Load TF names
|
|
tf_names = load_tf_names('transcription_factors.txt')
|
|
|
|
# Run inference
|
|
network = grnboost2(
|
|
expression_data=expression_data,
|
|
tf_names=tf_names,
|
|
seed=42 # For reproducibility
|
|
)
|
|
|
|
# Save results
|
|
network.to_csv('network_output.tsv', sep='\t', index=False)
|
|
```
|
|
|
|
**Output format:**
|
|
- DataFrame with columns: `['TF', 'target', 'importance']`
|
|
- Higher importance scores indicate stronger predicted regulatory relationships
|
|
- Typically sorted by importance (descending)
|
|
|
|
**Multiprocessing requirement:**
|
|
All arboreto code must include `if __name__ == '__main__':` protection due to Dask's multiprocessing requirements:
|
|
|
|
```python
|
|
if __name__ == '__main__':
|
|
# Arboreto code goes here
|
|
network = grnboost2(expression_data=expr_data, seed=42)
|
|
```
|
|
|
|
### 2. Algorithm Selection
|
|
|
|
**GRNBoost2 (Recommended for most cases):**
|
|
- ~10-100x faster than GENIE3
|
|
- Uses stochastic gradient boosting with early-stopping
|
|
- Best for: Large datasets (>10k observations), time-sensitive analyses
|
|
- Function: `arboreto.algo.grnboost2()`
|
|
|
|
**GENIE3:**
|
|
- Uses Random Forest regression
|
|
- More established, classical approach
|
|
- Best for: Small datasets, methodological comparisons, reproducing published results
|
|
- Function: `arboreto.algo.genie3()`
|
|
|
|
**When to compare both algorithms:**
|
|
Use the provided `compare_algorithms.py` script when:
|
|
- Validating results for critical analyses
|
|
- Benchmarking performance on new datasets
|
|
- Publishing research requiring methodological comparisons
|
|
|
|
### 3. Distributed Computing
|
|
|
|
**Local execution (default):**
|
|
Arboreto automatically creates a local Dask client. No configuration needed:
|
|
```python
|
|
network = grnboost2(expression_data=expr_data)
|
|
```
|
|
|
|
**Custom local cluster (recommended for better control):**
|
|
```python
|
|
from dask.distributed import Client, LocalCluster
|
|
|
|
# Configure cluster
|
|
cluster = LocalCluster(
|
|
n_workers=4,
|
|
threads_per_worker=2,
|
|
memory_limit='4GB',
|
|
diagnostics_port=8787 # Dashboard at http://localhost:8787
|
|
)
|
|
client = Client(cluster)
|
|
|
|
# Run inference
|
|
network = grnboost2(
|
|
expression_data=expr_data,
|
|
client_or_address=client
|
|
)
|
|
|
|
# Clean up
|
|
client.close()
|
|
cluster.close()
|
|
```
|
|
|
|
**Distributed cluster (multi-node):**
|
|
On scheduler node:
|
|
```bash
|
|
dask-scheduler --no-bokeh
|
|
```
|
|
|
|
On worker nodes:
|
|
```bash
|
|
dask-worker scheduler-address:8786 --local-dir /tmp
|
|
```
|
|
|
|
In Python:
|
|
```python
|
|
from dask.distributed import Client
|
|
|
|
client = Client('scheduler-address:8786')
|
|
network = grnboost2(expression_data=expr_data, client_or_address=client)
|
|
```
|
|
|
|
### 4. Data Preparation
|
|
|
|
**Common data format issues:**
|
|
|
|
1. **Transposed data** (genes as rows instead of columns):
|
|
```python
|
|
# If genes are rows, transpose
|
|
expression_data = pd.read_csv('data.tsv', sep='\t', index_col=0).T
|
|
```
|
|
|
|
2. **Missing gene names:**
|
|
```python
|
|
# Provide gene names if using numpy array
|
|
network = grnboost2(
|
|
expression_data=expr_array,
|
|
gene_names=['Gene1', 'Gene2', 'Gene3', ...],
|
|
seed=42
|
|
)
|
|
```
|
|
|
|
3. **Transcription factor specification:**
|
|
```python
|
|
# Option 1: Python list
|
|
tf_names = ['Sox2', 'Oct4', 'Nanog', 'Klf4']
|
|
|
|
# Option 2: Load from file (one TF per line)
|
|
from arboreto.utils import load_tf_names
|
|
tf_names = load_tf_names('tf_names.txt')
|
|
```
|
|
|
|
### 5. Reproducibility
|
|
|
|
Always specify a seed for consistent results:
|
|
```python
|
|
network = grnboost2(expression_data=expr_data, seed=42)
|
|
```
|
|
|
|
Without a seed, results will vary between runs due to algorithm randomness.
|
|
|
|
### 6. Result Interpretation
|
|
|
|
**Understanding the output:**
|
|
- `TF`: Transcription factor (regulator) gene
|
|
- `target`: Target gene being regulated
|
|
- `importance`: Strength of predicted regulatory relationship
|
|
|
|
**Typical post-processing:**
|
|
```python
|
|
# Filter by importance threshold
|
|
high_confidence = network[network['importance'] > 10]
|
|
|
|
# Get top N predictions
|
|
top_predictions = network.head(1000)
|
|
|
|
# Find all targets of a specific TF
|
|
sox2_targets = network[network['TF'] == 'Sox2']
|
|
|
|
# Count regulations per TF
|
|
tf_counts = network['TF'].value_counts()
|
|
```
|
|
|
|
## Installation
|
|
|
|
**Recommended (via conda):**
|
|
```bash
|
|
conda install -c bioconda arboreto
|
|
```
|
|
|
|
**Via pip:**
|
|
```bash
|
|
pip install arboreto
|
|
```
|
|
|
|
**From source:**
|
|
```bash
|
|
git clone https://github.com/tmoerman/arboreto.git
|
|
cd arboreto
|
|
pip install .
|
|
```
|
|
|
|
**Dependencies:**
|
|
- pandas
|
|
- numpy
|
|
- scikit-learn
|
|
- scipy
|
|
- dask
|
|
- distributed
|
|
|
|
## Troubleshooting
|
|
|
|
### Issue: Bokeh error when launching Dask scheduler
|
|
|
|
**Error:** `TypeError: got an unexpected keyword argument 'host'`
|
|
|
|
**Solutions:**
|
|
- Use `dask-scheduler --no-bokeh` to disable Bokeh
|
|
- Upgrade to Dask distributed >= 0.20.0
|
|
|
|
### Issue: Workers not connecting to scheduler
|
|
|
|
**Symptoms:** Worker processes start but fail to establish connections
|
|
|
|
**Solutions:**
|
|
- Remove `dask-worker-space` directory before restarting workers
|
|
- Specify adequate `local_dir` when creating cluster:
|
|
```python
|
|
cluster = LocalCluster(
|
|
worker_kwargs={'local_dir': '/tmp'}
|
|
)
|
|
```
|
|
|
|
### Issue: Memory errors with large datasets
|
|
|
|
**Solutions:**
|
|
- Increase worker memory limits: `memory_limit='8GB'`
|
|
- Distribute across more nodes
|
|
- Reduce dataset size through preprocessing (e.g., feature selection)
|
|
- Ensure expression matrix fits in available RAM
|
|
|
|
### Issue: Inconsistent results across runs
|
|
|
|
**Solution:** Always specify a `seed` parameter:
|
|
```python
|
|
network = grnboost2(expression_data=expr_data, seed=42)
|
|
```
|
|
|
|
### Issue: Import errors or missing dependencies
|
|
|
|
**Solution:** Use conda installation to handle numerical library dependencies:
|
|
```bash
|
|
conda create --name arboreto-env
|
|
conda activate arboreto-env
|
|
conda install -c bioconda arboreto
|
|
```
|
|
|
|
## Provided Scripts
|
|
|
|
This skill includes ready-to-use scripts for common workflows:
|
|
|
|
### scripts/basic_grn_inference.py
|
|
|
|
Command-line tool for standard GRN inference workflow.
|
|
|
|
**Usage:**
|
|
```bash
|
|
python scripts/basic_grn_inference.py expression_data.tsv \
|
|
-t tf_names.txt \
|
|
-o network.tsv \
|
|
-s 42 \
|
|
--transpose # if genes are rows
|
|
```
|
|
|
|
**Features:**
|
|
- Automatic data loading and validation
|
|
- Optional TF list specification
|
|
- Configurable output format
|
|
- Data transposition support
|
|
- Summary statistics
|
|
|
|
### scripts/distributed_inference.py
|
|
|
|
GRN inference with custom Dask cluster configuration.
|
|
|
|
**Usage:**
|
|
```bash
|
|
python scripts/distributed_inference.py expression_data.tsv \
|
|
-t tf_names.txt \
|
|
-w 8 \
|
|
-m 4GB \
|
|
--threads 2 \
|
|
--dashboard-port 8787
|
|
```
|
|
|
|
**Features:**
|
|
- Configurable worker count and memory limits
|
|
- Dask dashboard integration
|
|
- Thread configuration
|
|
- Resource monitoring
|
|
|
|
### scripts/compare_algorithms.py
|
|
|
|
Compare GRNBoost2 and GENIE3 side-by-side.
|
|
|
|
**Usage:**
|
|
```bash
|
|
python scripts/compare_algorithms.py expression_data.tsv \
|
|
-t tf_names.txt \
|
|
--top-n 100
|
|
```
|
|
|
|
**Features:**
|
|
- Runtime comparison
|
|
- Network statistics
|
|
- Prediction overlap analysis
|
|
- Top prediction comparison
|
|
|
|
## Reference Documentation
|
|
|
|
Detailed API documentation is available in [references/api_reference.md](references/api_reference.md), including:
|
|
- Complete parameter descriptions for all functions
|
|
- Data format specifications
|
|
- Distributed computing configuration
|
|
- Performance optimization tips
|
|
- Integration with pySCENIC
|
|
- Comprehensive examples
|
|
|
|
Load this reference when:
|
|
- Working with advanced Dask configurations
|
|
- Troubleshooting complex deployment scenarios
|
|
- Understanding algorithm internals
|
|
- Optimizing performance for specific use cases
|
|
|
|
## Integration with pySCENIC
|
|
|
|
Arboreto is the first step in the pySCENIC single-cell analysis pipeline:
|
|
|
|
1. **GRN Inference (arboreto)** ← This skill
|
|
- Input: Expression matrix
|
|
- Output: Regulatory network
|
|
|
|
2. **Regulon Prediction (pySCENIC)**
|
|
- Input: Network from arboreto
|
|
- Output: Refined regulons
|
|
|
|
3. **Cell Type Identification (pySCENIC)**
|
|
- Input: Regulons
|
|
- Output: Cell type scores
|
|
|
|
When working with pySCENIC, use arboreto to generate the initial network, then pass results to the pySCENIC pipeline.
|
|
|
|
## Best Practices
|
|
|
|
1. **Always use seed parameter** for reproducible research
|
|
2. **Validate data orientation** (rows = observations, columns = genes)
|
|
3. **Specify TF list** when known to focus inference and improve speed
|
|
4. **Monitor with Dask dashboard** for distributed computing
|
|
5. **Save intermediate results** to avoid re-running long computations
|
|
6. **Filter results** by importance threshold for downstream analysis
|
|
7. **Use GRNBoost2 by default** unless specifically requiring GENIE3
|
|
8. **Include multiprocessing guard** (`if __name__ == '__main__':`) in all scripts
|
|
|
|
## Quick Reference
|
|
|
|
**Basic inference:**
|
|
```python
|
|
from arboreto.algo import grnboost2
|
|
network = grnboost2(expression_data=expr_df, seed=42)
|
|
```
|
|
|
|
**With TF specification:**
|
|
```python
|
|
network = grnboost2(expression_data=expr_df, tf_names=tf_list, seed=42)
|
|
```
|
|
|
|
**With custom Dask client:**
|
|
```python
|
|
from dask.distributed import Client, LocalCluster
|
|
cluster = LocalCluster(n_workers=4)
|
|
client = Client(cluster)
|
|
network = grnboost2(expression_data=expr_df, client_or_address=client, seed=42)
|
|
client.close()
|
|
cluster.close()
|
|
```
|
|
|
|
**Load TF names:**
|
|
```python
|
|
from arboreto.utils import load_tf_names
|
|
tf_names = load_tf_names('transcription_factors.txt')
|
|
```
|
|
|
|
**Transpose data:**
|
|
```python
|
|
expression_df = pd.read_csv('data.tsv', sep='\t', index_col=0).T
|
|
```
|