Files
claude-scientific-skills/scientific-skills/neuropixels-analysis/SKILL.md
Robert 312f18ae60 Add neuropixels-analysis skill for extracellular electrophysiology
Adds comprehensive toolkit for analyzing Neuropixels high-density neural
recordings using SpikeInterface, Allen Institute, and IBL best practices.

Features:
- Data loading from SpikeGLX, Open Ephys, and NWB formats
- Preprocessing pipelines (filtering, phase shift, CAR, bad channel detection)
- Motion/drift estimation and correction
- Spike sorting integration (Kilosort4, SpykingCircus2, Mountainsort5)
- Quality metrics computation (SNR, ISI violations, presence ratio)
- Automated curation using Allen/IBL criteria
- AI-assisted visual curation for uncertain units
- Export to Phy and NWB formats

Supports Neuropixels 1.0 and 2.0 probes.

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2025-12-17 11:06:28 -05:00

345 lines
11 KiB
Markdown

---
name: neuropixels-analysis
description: "Neuropixels neural recording analysis. Load SpikeGLX/OpenEphys data, preprocess, motion correction, Kilosort4 spike sorting, quality metrics, Allen/IBL curation, AI-assisted visual analysis, for Neuropixels 1.0/2.0 extracellular electrophysiology. Use when working with neural recordings, spike sorting, extracellular electrophysiology, or when the user mentions Neuropixels, SpikeGLX, Open Ephys, Kilosort, quality metrics, or unit curation."
---
# Neuropixels Data Analysis
## Overview
Comprehensive toolkit for analyzing Neuropixels high-density neural recordings using current best practices from SpikeInterface, Allen Institute, and International Brain Laboratory (IBL). Supports the full workflow from raw data to publication-ready curated units.
## When to Use This Skill
This skill should be used when:
- Working with Neuropixels recordings (.ap.bin, .lf.bin, .meta files)
- Loading data from SpikeGLX, Open Ephys, or NWB formats
- Preprocessing neural recordings (filtering, CAR, bad channel detection)
- Detecting and correcting motion/drift in recordings
- Running spike sorting (Kilosort4, SpykingCircus2, Mountainsort5)
- Computing quality metrics (SNR, ISI violations, presence ratio)
- Curating units using Allen/IBL criteria
- Creating visualizations of neural data
- Exporting results to Phy or NWB
## Supported Hardware & Formats
| Probe | Electrodes | Channels | Notes |
|-------|-----------|----------|-------|
| Neuropixels 1.0 | 960 | 384 | Requires phase_shift correction |
| Neuropixels 2.0 (single) | 1280 | 384 | Denser geometry |
| Neuropixels 2.0 (4-shank) | 5120 | 384 | Multi-region recording |
| Format | Extension | Reader |
|--------|-----------|--------|
| SpikeGLX | `.ap.bin`, `.lf.bin`, `.meta` | `si.read_spikeglx()` |
| Open Ephys | `.continuous`, `.oebin` | `si.read_openephys()` |
| NWB | `.nwb` | `si.read_nwb()` |
## Quick Start
### Basic Import and Setup
```python
import spikeinterface.full as si
import neuropixels_analysis as npa
# Configure parallel processing
job_kwargs = dict(n_jobs=-1, chunk_duration='1s', progress_bar=True)
```
### Loading Data
```python
# SpikeGLX (most common)
recording = si.read_spikeglx('/path/to/data', stream_id='imec0.ap')
# Open Ephys (common for many labs)
recording = si.read_openephys('/path/to/Record_Node_101/')
# Check available streams
streams, ids = si.get_neo_streams('spikeglx', '/path/to/data')
print(streams) # ['imec0.ap', 'imec0.lf', 'nidq']
# For testing with subset of data
recording = recording.frame_slice(0, int(60 * recording.get_sampling_frequency()))
```
### Complete Pipeline (One Command)
```python
# Run full analysis pipeline
results = npa.run_pipeline(
recording,
output_dir='output/',
sorter='kilosort4',
curation_method='allen',
)
# Access results
sorting = results['sorting']
metrics = results['metrics']
labels = results['labels']
```
## Standard Analysis Workflow
### 1. Preprocessing
```python
# Recommended preprocessing chain
rec = si.highpass_filter(recording, freq_min=400)
rec = si.phase_shift(rec) # Required for Neuropixels 1.0
bad_ids, _ = si.detect_bad_channels(rec)
rec = rec.remove_channels(bad_ids)
rec = si.common_reference(rec, operator='median')
# Or use our wrapper
rec = npa.preprocess(recording)
```
### 2. Check and Correct Drift
```python
# Check for drift (always do this!)
motion_info = npa.estimate_motion(rec, preset='kilosort_like')
npa.plot_drift(rec, motion_info, output='drift_map.png')
# Apply correction if needed
if motion_info['motion'].max() > 10: # microns
rec = npa.correct_motion(rec, preset='nonrigid_accurate')
```
### 3. Spike Sorting
```python
# Kilosort4 (recommended, requires GPU)
sorting = si.run_sorter('kilosort4', rec, folder='ks4_output')
# CPU alternatives
sorting = si.run_sorter('tridesclous2', rec, folder='tdc2_output')
sorting = si.run_sorter('spykingcircus2', rec, folder='sc2_output')
sorting = si.run_sorter('mountainsort5', rec, folder='ms5_output')
# Check available sorters
print(si.installed_sorters())
```
### 4. Postprocessing
```python
# Create analyzer and compute all extensions
analyzer = si.create_sorting_analyzer(sorting, rec, sparse=True)
analyzer.compute('random_spikes', max_spikes_per_unit=500)
analyzer.compute('waveforms', ms_before=1.0, ms_after=2.0)
analyzer.compute('templates', operators=['average', 'std'])
analyzer.compute('spike_amplitudes')
analyzer.compute('correlograms', window_ms=50.0, bin_ms=1.0)
analyzer.compute('unit_locations', method='monopolar_triangulation')
analyzer.compute('quality_metrics')
metrics = analyzer.get_extension('quality_metrics').get_data()
```
### 5. Curation
```python
# Allen Institute criteria (conservative)
good_units = metrics.query("""
presence_ratio > 0.9 and
isi_violations_ratio < 0.5 and
amplitude_cutoff < 0.1
""").index.tolist()
# Or use automated curation
labels = npa.curate(metrics, method='allen') # 'allen', 'ibl', 'strict'
```
### 6. AI-Assisted Curation (For Uncertain Units)
When using this skill with Claude Code, Claude can directly analyze waveform plots and provide expert curation decisions. For programmatic API access:
```python
from anthropic import Anthropic
# Setup API client
client = Anthropic()
# Analyze uncertain units visually
uncertain = metrics.query('snr > 3 and snr < 8').index.tolist()
for unit_id in uncertain:
result = npa.analyze_unit_visually(analyzer, unit_id, api_client=client)
print(f"Unit {unit_id}: {result['classification']}")
print(f" Reasoning: {result['reasoning'][:100]}...")
```
**Claude Code Integration**: When running within Claude Code, ask Claude to examine waveform/correlogram plots directly - no API setup required.
### 7. Generate Analysis Report
```python
# Generate comprehensive HTML report with visualizations
report_dir = npa.generate_analysis_report(results, 'output/')
# Opens report.html with summary stats, figures, and unit table
# Print formatted summary to console
npa.print_analysis_summary(results)
```
### 8. Export Results
```python
# Export to Phy for manual review
si.export_to_phy(analyzer, output_folder='phy_export/',
compute_pc_features=True, compute_amplitudes=True)
# Export to NWB
from spikeinterface.exporters import export_to_nwb
export_to_nwb(rec, sorting, 'output.nwb')
# Save quality metrics
metrics.to_csv('quality_metrics.csv')
```
## Common Pitfalls and Best Practices
1. **Always check drift** before spike sorting - drift > 10μm significantly impacts quality
2. **Use phase_shift** for Neuropixels 1.0 probes (not needed for 2.0)
3. **Save preprocessed data** to avoid recomputing - use `rec.save(folder='preprocessed/')`
4. **Use GPU** for Kilosort4 - it's 10-50x faster than CPU alternatives
5. **Review uncertain units manually** - automated curation is a starting point
6. **Combine metrics with AI** - use metrics for clear cases, AI for borderline units
7. **Document your thresholds** - different analyses may need different criteria
8. **Export to Phy** for critical experiments - human oversight is valuable
## Key Parameters to Adjust
### Preprocessing
- `freq_min`: Highpass cutoff (300-400 Hz typical)
- `detect_threshold`: Bad channel detection sensitivity
### Motion Correction
- `preset`: 'kilosort_like' (fast) or 'nonrigid_accurate' (better for severe drift)
### Spike Sorting (Kilosort4)
- `batch_size`: Samples per batch (30000 default)
- `nblocks`: Number of drift blocks (increase for long recordings)
- `Th_learned`: Detection threshold (lower = more spikes)
### Quality Metrics
- `snr_threshold`: Signal-to-noise cutoff (3-5 typical)
- `isi_violations_ratio`: Refractory violations (0.01-0.5)
- `presence_ratio`: Recording coverage (0.5-0.95)
## Bundled Resources
### scripts/preprocess_recording.py
Automated preprocessing script:
```bash
python scripts/preprocess_recording.py /path/to/data --output preprocessed/
```
### scripts/run_sorting.py
Run spike sorting:
```bash
python scripts/run_sorting.py preprocessed/ --sorter kilosort4 --output sorting/
```
### scripts/compute_metrics.py
Compute quality metrics and apply curation:
```bash
python scripts/compute_metrics.py sorting/ preprocessed/ --output metrics/ --curation allen
```
### scripts/export_to_phy.py
Export to Phy for manual curation:
```bash
python scripts/export_to_phy.py metrics/analyzer --output phy_export/
```
### assets/analysis_template.py
Complete analysis template. Copy and customize:
```bash
cp assets/analysis_template.py my_analysis.py
# Edit parameters and run
python my_analysis.py
```
### reference/standard_workflow.md
Detailed step-by-step workflow with explanations for each stage.
### reference/api_reference.md
Quick function reference organized by module.
### reference/plotting_guide.md
Comprehensive visualization guide for publication-quality figures.
## Detailed Reference Guides
| Topic | Reference |
|-------|-----------|
| Full workflow | [reference/standard_workflow.md](reference/standard_workflow.md) |
| API reference | [reference/api_reference.md](reference/api_reference.md) |
| Plotting guide | [reference/plotting_guide.md](reference/plotting_guide.md) |
| Preprocessing | [PREPROCESSING.md](PREPROCESSING.md) |
| Spike sorting | [SPIKE_SORTING.md](SPIKE_SORTING.md) |
| Motion correction | [MOTION_CORRECTION.md](MOTION_CORRECTION.md) |
| Quality metrics | [QUALITY_METRICS.md](QUALITY_METRICS.md) |
| Automated curation | [AUTOMATED_CURATION.md](AUTOMATED_CURATION.md) |
| AI-assisted curation | [AI_CURATION.md](AI_CURATION.md) |
| Waveform analysis | [ANALYSIS.md](ANALYSIS.md) |
## Installation
```bash
# Core packages
pip install spikeinterface[full] probeinterface neo
# Spike sorters
pip install kilosort # Kilosort4 (GPU required)
pip install spykingcircus # SpykingCircus2 (CPU)
pip install mountainsort5 # Mountainsort5 (CPU)
# Our toolkit
pip install neuropixels-analysis
# Optional: AI curation
pip install anthropic
# Optional: IBL tools
pip install ibl-neuropixel ibllib
```
## Project Structure
```
project/
├── raw_data/
│ └── recording_g0/
│ └── recording_g0_imec0/
│ ├── recording_g0_t0.imec0.ap.bin
│ └── recording_g0_t0.imec0.ap.meta
├── preprocessed/ # Saved preprocessed recording
├── motion/ # Motion estimation results
├── sorting_output/ # Spike sorter output
├── analyzer/ # SortingAnalyzer (waveforms, metrics)
├── phy_export/ # For manual curation
├── ai_curation/ # AI analysis reports
└── results/
├── quality_metrics.csv
├── curation_labels.json
└── output.nwb
```
## Additional Resources
- **SpikeInterface Docs**: https://spikeinterface.readthedocs.io/
- **Neuropixels Tutorial**: https://spikeinterface.readthedocs.io/en/stable/how_to/analyze_neuropixels.html
- **Kilosort4 GitHub**: https://github.com/MouseLand/Kilosort
- **IBL Neuropixel Tools**: https://github.com/int-brain-lab/ibl-neuropixel
- **Allen Institute ecephys**: https://github.com/AllenInstitute/ecephys_spike_sorting
- **Bombcell (Automated QC)**: https://github.com/Julie-Fabre/bombcell
- **SpikeAgent (AI Curation)**: https://github.com/SpikeAgent/SpikeAgent