13 KiB
BioPython Specialized Analysis Modules
This document covers BioPython's specialized modules for structural biology, phylogenetics, population genetics, and other advanced analyses.
Structural Bioinformatics
Bio.PDB - Protein Structure Analysis
Comprehensive tools for handling macromolecular crystal structures.
Structure Hierarchy
PDB structures are organized hierarchically:
- Structure → Models → Chains → Residues → Atoms
from Bio.PDB import PDBParser
parser = PDBParser()
structure = parser.get_structure("protein", "1abc.pdb")
# Navigate hierarchy
for model in structure:
for chain in model:
for residue in chain:
for atom in residue:
print(atom.coord) # xyz coordinates
Parsing Structure Files
PDB format:
from Bio.PDB import PDBParser
parser = PDBParser(QUIET=True)
structure = parser.get_structure("myprotein", "structure.pdb")
mmCIF format:
from Bio.PDB import MMCIFParser
parser = MMCIFParser(QUIET=True)
structure = parser.get_structure("myprotein", "structure.cif")
Fast mmCIF parser:
from Bio.PDB import FastMMCIFParser
parser = FastMMCIFParser(QUIET=True)
structure = parser.get_structure("myprotein", "structure.cif")
MMTF format:
from Bio.PDB import MMTFParser
parser = MMTFParser()
structure = parser.get_structure("structure.mmtf")
Binary CIF:
from Bio.PDB.binary_cif import BinaryCIFParser
parser = BinaryCIFParser()
structure = parser.get_structure("structure.bcif")
Downloading Structures
from Bio.PDB import PDBList
pdbl = PDBList()
# Download specific structure
pdbl.retrieve_pdb_file("1ABC", file_format="pdb", pdir="structures/")
# Download entire PDB (obsolete entries)
pdbl.download_obsolete_entries(pdir="obsolete/")
# Update local PDB mirror
pdbl.update_pdb()
Structure Selection and Filtering
# Select specific chains
chain_A = structure[0]['A']
# Select specific residues
residue_10 = chain_A[10]
# Select specific atoms
ca_atom = residue_10['CA']
# Iterate over specific atom types
for atom in structure.get_atoms():
if atom.name == 'CA': # Alpha carbons only
print(atom.coord)
Structure selectors:
from Bio.PDB.Polypeptide import is_aa
# Filter by residue type
for residue in structure.get_residues():
if is_aa(residue):
print(f"Amino acid: {residue.resname}")
Secondary Structure Analysis
DSSP integration:
from Bio.PDB import DSSP
# Requires DSSP program installed
model = structure[0]
dssp = DSSP(model, "structure.pdb")
# Access secondary structure
for key in dssp:
secondary_structure = dssp[key][2]
accessibility = dssp[key][3]
print(f"Residue {key}: {secondary_structure}, accessible: {accessibility}")
DSSP codes:
- H: Alpha helix
- B: Beta bridge
- E: Extended strand (beta sheet)
- G: 3-10 helix
- I: Pi helix
- T: Turn
- S: Bend
- -: Coil
Solvent Accessibility
Shrake-Rupley algorithm:
from Bio.PDB import ShrakeRupley
sr = ShrakeRupley()
sr.compute(structure, level="R") # R=residue, A=atom, C=chain, M=model, S=structure
for residue in structure.get_residues():
print(f"{residue.resname} {residue.id[1]}: {residue.sasa} Ų")
NACCESS wrapper:
from Bio.PDB import NACCESS
# Requires NACCESS program
naccess = NACCESS("structure.pdb")
for residue_id, data in naccess.items():
print(f"Residue {residue_id}: {data['all_atoms_abs']} Ų")
Half-sphere exposure:
from Bio.PDB import HSExposure
# Requires DSSP
model = structure[0]
hse = HSExposure()
hse.calc_hs_exposure(model, "structure.pdb")
for chain in model:
for residue in chain:
if residue.has_id('EXP_HSE_A_U'):
hse_up = residue.xtra['EXP_HSE_A_U']
hse_down = residue.xtra['EXP_HSE_A_D']
Structural Alignment and Superimposition
Standard superimposition:
from Bio.PDB import Superimposer
sup = Superimposer()
sup.set_atoms(ref_atoms, alt_atoms) # Lists of atoms to align
sup.apply(structure2.get_atoms()) # Apply transformation
print(f"RMSD: {sup.rms}")
print(f"Rotation matrix: {sup.rotran[0]}")
print(f"Translation vector: {sup.rotran[1]}")
QCP (Quaternion Characteristic Polynomial) method:
from Bio.PDB import QCPSuperimposer
qcp = QCPSuperimposer()
qcp.set(ref_coords, alt_coords)
qcp.run()
print(f"RMSD: {qcp.get_rms()}")
Geometric Calculations
Distances and angles:
# Distance between atoms
from Bio.PDB import Vector
dist = atom1 - atom2 # Returns distance
# Angle between three atoms
from Bio.PDB import calc_angle
angle = calc_angle(atom1.coord, atom2.coord, atom3.coord)
# Dihedral angle
from Bio.PDB import calc_dihedral
dihedral = calc_dihedral(atom1.coord, atom2.coord, atom3.coord, atom4.coord)
Vector operations:
from Bio.PDB.Vector import Vector
v1 = Vector(atom1.coord)
v2 = Vector(atom2.coord)
# Vector operations
v3 = v1 + v2
v4 = v1 - v2
dot_product = v1 * v2
cross_product = v1 ** v2
magnitude = v1.norm()
normalized = v1.normalized()
Internal Coordinates
Advanced residue geometry representation:
from Bio.PDB import internal_coords
# Enable internal coordinates
structure.atom_to_internal_coordinates()
# Access phi, psi angles
for residue in structure.get_residues():
if residue.internal_coord:
print(f"Phi: {residue.internal_coord.get_angle('phi')}")
print(f"Psi: {residue.internal_coord.get_angle('psi')}")
Writing Structures
from Bio.PDB import PDBIO
io = PDBIO()
io.set_structure(structure)
io.save("output.pdb")
# Save specific selection
io.save("chain_A.pdb", select=ChainSelector("A"))
Bio.SCOP - SCOP Database
Access to Structural Classification of Proteins database.
Bio.KEGG - Pathway Analysis
Interface to KEGG (Kyoto Encyclopedia of Genes and Genomes) databases:
Capabilities:
- Access pathway maps
- Retrieve enzyme data
- Get compound information
- Query orthology relationships
Phylogenetics
Bio.Phylo - Phylogenetic Tree Analysis
Comprehensive phylogenetic tree manipulation and analysis.
Reading and Writing Trees
Supported formats:
- Newick: Simple, widely-used format
- NEXUS: Rich metadata format
- PhyloXML: XML-based with extensive annotations
- NeXML: Modern XML standard
from Bio import Phylo
# Read tree
tree = Phylo.read("tree.nwk", "newick")
# Read multiple trees
trees = list(Phylo.parse("trees.nex", "nexus"))
# Write tree
Phylo.write(tree, "output.nwk", "newick")
Tree Visualization
ASCII visualization:
Phylo.draw_ascii(tree)
Matplotlib plotting:
import matplotlib.pyplot as plt
Phylo.draw(tree)
plt.show()
# With customization
fig, ax = plt.subplots(figsize=(10, 8))
Phylo.draw(tree, axes=ax, do_show=False)
ax.set_title("My Phylogenetic Tree")
plt.show()
Tree Navigation and Manipulation
Find clades:
# Get all terminal nodes (leaves)
terminals = tree.get_terminals()
# Get all nonterminal nodes
nonterminals = tree.get_nonterminals()
# Find specific clade
target = tree.find_any(name="Species_A")
# Find all matching clades
matches = tree.find_clades(terminal=True)
Tree properties:
# Count terminals
num_species = tree.count_terminals()
# Get total branch length
total_length = tree.total_branch_length()
# Check if tree is bifurcating
is_bifurcating = tree.is_bifurcating()
# Get maximum distance from root
max_dist = tree.distance(tree.root)
Tree modification:
# Prune tree to specific taxa
keep_taxa = ["Species_A", "Species_B", "Species_C"]
tree.prune(keep_taxa)
# Collapse short branches
tree.collapse_all(lambda c: c.branch_length < 0.01)
# Ladderize (sort branches)
tree.ladderize()
# Root tree at midpoint
tree.root_at_midpoint()
# Root at specific clade
outgroup = tree.find_any(name="Outgroup_species")
tree.root_with_outgroup(outgroup)
Calculate distances:
# Distance between two clades
dist = tree.distance(clade1, clade2)
# Distance from root
root_dist = tree.distance(tree.root, terminal_clade)
Tree Construction
Distance-based methods:
from Bio.Phylo.TreeConstruction import DistanceTreeConstructor, DistanceCalculator
from Bio import AlignIO
# Load alignment
aln = AlignIO.read("alignment.fasta", "fasta")
# Calculate distance matrix
calculator = DistanceCalculator('identity')
dm = calculator.get_distance(aln)
# Construct tree using UPGMA
constructor = DistanceTreeConstructor()
tree_upgma = constructor.upgma(dm)
# Or using Neighbor-Joining
tree_nj = constructor.nj(dm)
Parsimony method:
from Bio.Phylo.TreeConstruction import ParsimonyScorer, NNITreeSearcher
scorer = ParsimonyScorer()
searcher = NNITreeSearcher(scorer)
tree = searcher.search(starting_tree, alignment)
Distance calculators:
- 'identity': Simple identity scoring
- 'blastn': BLAST nucleotide scoring
- 'blastp': BLAST protein scoring
- 'dnafull': EMBOSS DNA scoring matrix
- 'blosum62': BLOSUM62 protein matrix
- 'pam250': PAM250 protein matrix
Consensus Trees
from Bio.Phylo.Consensus import majority_consensus, strict_consensus
# Strict consensus
consensus_strict = strict_consensus(trees)
# Majority rule consensus
consensus_majority = majority_consensus(trees, cutoff=0.5)
# Bootstrap consensus
from Bio.Phylo.Consensus import bootstrap_consensus
bootstrap_tree = bootstrap_consensus(trees, cutoff=0.7)
External Tool Wrappers
PhyML:
from Bio.Phylo.Applications import PhymlCommandline
cmd = PhymlCommandline(input="alignment.phy", datatype="nt", model="HKY85", alpha="e", bootstrap=100)
stdout, stderr = cmd()
tree = Phylo.read("alignment.phy_phyml_tree.txt", "newick")
RAxML:
from Bio.Phylo.Applications import RaxmlCommandline
cmd = RaxmlCommandline(
sequences="alignment.phy",
model="GTRGAMMA",
name="mytree",
parsimony_seed=12345
)
stdout, stderr = cmd()
FastTree:
from Bio.Phylo.Applications import FastTreeCommandline
cmd = FastTreeCommandline(input="alignment.fasta", out="tree.nwk", gtr=True, gamma=True)
stdout, stderr = cmd()
Bio.Phylo.PAML - Evolutionary Analysis
Interface to PAML (Phylogenetic Analysis by Maximum Likelihood):
CODEML - Codon-based analysis:
from Bio.Phylo.PAML import codeml
cml = codeml.Codeml()
cml.alignment = "alignment.phy"
cml.tree = "tree.nwk"
cml.out_file = "results.out"
cml.working_dir = "./paml_wd"
# Set parameters
cml.set_options(
seqtype=1, # Codon sequences
model=0, # One omega ratio
NSsites=[0, 1, 2], # Test different models
CodonFreq=2, # F3x4 codon frequencies
)
results = cml.run()
BaseML - Nucleotide-based analysis:
from Bio.Phylo.PAML import baseml
bml = baseml.Baseml()
bml.alignment = "alignment.phy"
bml.tree = "tree.nwk"
results = bml.run()
YN00 - Yang-Nielsen method:
from Bio.Phylo.PAML import yn00
yn = yn00.Yn00()
yn.alignment = "alignment.phy"
results = yn.run()
Population Genetics
Bio.PopGen - Population Genetics Analysis
Tools for population-level genetic analysis.
Capabilities:
- Allele frequency calculations
- Hardy-Weinberg equilibrium testing
- Linkage disequilibrium analysis
- F-statistics (FST, FIS, FIT)
- Tajima's D
- Population structure analysis
Clustering and Machine Learning
Bio.Cluster - Clustering Algorithms
Statistical clustering for gene expression and other biological data:
Hierarchical clustering:
from Bio.Cluster import treecluster
tree = treecluster(data, method='a', dist='e')
# method: 'a'=average, 's'=single, 'm'=maximum, 'c'=centroid
# dist: 'e'=Euclidean, 'c'=correlation, 'a'=absolute correlation
k-means clustering:
from Bio.Cluster import kcluster
clusterid, error, nfound = kcluster(data, nclusters=5, npass=100)
Self-Organizing Maps (SOM):
from Bio.Cluster import somcluster
clusterid, celldata = somcluster(data, nx=3, ny=3)
Principal Component Analysis:
from Bio.Cluster import pca
columnmean, coordinates, components, eigenvalues = pca(data)
Visualization
Bio.Graphics - Genomic Visualization
Tools for creating publication-quality biological graphics.
GenomeDiagram - Circular and linear genome maps:
from Bio.Graphics import GenomeDiagram
from Bio import SeqIO
record = SeqIO.read("genome.gb", "genbank")
gd_diagram = GenomeDiagram.Diagram("Genome Map")
gd_track = gd_diagram.new_track(1, greytrack=True)
gd_feature_set = gd_track.new_set()
# Add features
for feature in record.features:
if feature.type == "gene":
gd_feature_set.add_feature(feature, color="blue", label=True)
gd_diagram.draw(format="linear", pagesize='A4', fragments=1)
gd_diagram.write("genome_map.pdf", "PDF")
Chromosomes - Chromosome visualization:
from Bio.Graphics.BasicChromosome import Chromosome
chr = Chromosome("Chromosome 1")
chr.add("gene1", 1000, 2000, color="red")
chr.add("gene2", 3000, 4500, color="blue")
Phenotype Analysis
Bio.phenotype - Phenotypic Microarray Analysis
Tools for analyzing phenotypic microarray data (e.g., Biolog plates):
Capabilities:
- Parse PM plate data
- Growth curve analysis
- Compare phenotypic profiles
- Calculate similarity metrics