mirror of
https://github.com/K-Dense-AI/claude-scientific-skills.git
synced 2026-01-26 16:58:56 +08:00
618 lines
18 KiB
Markdown
618 lines
18 KiB
Markdown
---
|
|
name: etetoolkit
|
|
description: Comprehensive toolkit for phylogenetic and hierarchical tree analysis using the ETE (Environment for Tree Exploration) Python library. This skill should be used when working with phylogenetic trees, gene trees, species trees, clustering dendrograms, or any hierarchical tree structures. Applies to tasks involving tree manipulation (pruning, rerooting, format conversion), evolutionary analysis (orthology detection, duplication/speciation events), tree comparison (Robinson-Foulds distance), NCBI taxonomy integration, tree visualization (PDF, SVG, PNG output), and clustering analysis with heatmaps.
|
|
---
|
|
|
|
# ETE Toolkit Skill
|
|
|
|
## Overview
|
|
|
|
Provide comprehensive support for phylogenetic and hierarchical tree analysis using the ETE (Environment for Tree Exploration) toolkit. Enable tree manipulation, evolutionary analysis, visualization, and integration with biological databases for phylogenomic research and clustering analysis.
|
|
|
|
## Core Capabilities
|
|
|
|
### 1. Tree Manipulation and Analysis
|
|
|
|
Load, manipulate, and analyze hierarchical tree structures with support for:
|
|
|
|
- **Tree I/O**: Read and write Newick, NHX, PhyloXML, and NeXML formats
|
|
- **Tree traversal**: Navigate trees using preorder, postorder, or levelorder strategies
|
|
- **Topology modification**: Prune, root, collapse nodes, resolve polytomies
|
|
- **Distance calculations**: Compute branch lengths and topological distances between nodes
|
|
- **Tree comparison**: Calculate Robinson-Foulds distances and identify topological differences
|
|
|
|
**Common patterns:**
|
|
|
|
```python
|
|
from ete3 import Tree
|
|
|
|
# Load tree from file
|
|
tree = Tree("tree.nw", format=1)
|
|
|
|
# Basic statistics
|
|
print(f"Leaves: {len(tree)}")
|
|
print(f"Total nodes: {len(list(tree.traverse()))}")
|
|
|
|
# Prune to taxa of interest
|
|
taxa_to_keep = ["species1", "species2", "species3"]
|
|
tree.prune(taxa_to_keep, preserve_branch_length=True)
|
|
|
|
# Midpoint root
|
|
midpoint = tree.get_midpoint_outgroup()
|
|
tree.set_outgroup(midpoint)
|
|
|
|
# Save modified tree
|
|
tree.write(outfile="rooted_tree.nw")
|
|
```
|
|
|
|
Use `scripts/tree_operations.py` for command-line tree manipulation:
|
|
|
|
```bash
|
|
# Display tree statistics
|
|
python scripts/tree_operations.py stats tree.nw
|
|
|
|
# Convert format
|
|
python scripts/tree_operations.py convert tree.nw output.nw --in-format 0 --out-format 1
|
|
|
|
# Reroot tree
|
|
python scripts/tree_operations.py reroot tree.nw rooted.nw --midpoint
|
|
|
|
# Prune to specific taxa
|
|
python scripts/tree_operations.py prune tree.nw pruned.nw --keep-taxa "sp1,sp2,sp3"
|
|
|
|
# Show ASCII visualization
|
|
python scripts/tree_operations.py ascii tree.nw
|
|
```
|
|
|
|
### 2. Phylogenetic Analysis
|
|
|
|
Analyze gene trees with evolutionary event detection:
|
|
|
|
- **Sequence alignment integration**: Link trees to multiple sequence alignments (FASTA, Phylip)
|
|
- **Species naming**: Automatic or custom species extraction from gene names
|
|
- **Evolutionary events**: Detect duplication and speciation events using Species Overlap or tree reconciliation
|
|
- **Orthology detection**: Identify orthologs and paralogs based on evolutionary events
|
|
- **Gene family analysis**: Split trees by duplications, collapse lineage-specific expansions
|
|
|
|
**Workflow for gene tree analysis:**
|
|
|
|
```python
|
|
from ete3 import PhyloTree
|
|
|
|
# Load gene tree with alignment
|
|
tree = PhyloTree("gene_tree.nw", alignment="alignment.fasta")
|
|
|
|
# Set species naming function
|
|
def get_species(gene_name):
|
|
return gene_name.split("_")[0]
|
|
|
|
tree.set_species_naming_function(get_species)
|
|
|
|
# Detect evolutionary events
|
|
events = tree.get_descendant_evol_events()
|
|
|
|
# Analyze events
|
|
for node in tree.traverse():
|
|
if hasattr(node, "evoltype"):
|
|
if node.evoltype == "D":
|
|
print(f"Duplication at {node.name}")
|
|
elif node.evoltype == "S":
|
|
print(f"Speciation at {node.name}")
|
|
|
|
# Extract ortholog groups
|
|
ortho_groups = tree.get_speciation_trees()
|
|
for i, ortho_tree in enumerate(ortho_groups):
|
|
ortho_tree.write(outfile=f"ortholog_group_{i}.nw")
|
|
```
|
|
|
|
**Finding orthologs and paralogs:**
|
|
|
|
```python
|
|
# Find orthologs to query gene
|
|
query = tree & "species1_gene1"
|
|
|
|
orthologs = []
|
|
paralogs = []
|
|
|
|
for event in events:
|
|
if query in event.in_seqs:
|
|
if event.etype == "S":
|
|
orthologs.extend([s for s in event.out_seqs if s != query])
|
|
elif event.etype == "D":
|
|
paralogs.extend([s for s in event.out_seqs if s != query])
|
|
```
|
|
|
|
### 3. NCBI Taxonomy Integration
|
|
|
|
Integrate taxonomic information from NCBI Taxonomy database:
|
|
|
|
- **Database access**: Automatic download and local caching of NCBI taxonomy (~300MB)
|
|
- **Taxid/name translation**: Convert between taxonomic IDs and scientific names
|
|
- **Lineage retrieval**: Get complete evolutionary lineages
|
|
- **Taxonomy trees**: Build species trees connecting specified taxa
|
|
- **Tree annotation**: Automatically annotate trees with taxonomic information
|
|
|
|
**Building taxonomy-based trees:**
|
|
|
|
```python
|
|
from ete3 import NCBITaxa
|
|
|
|
ncbi = NCBITaxa()
|
|
|
|
# Build tree from species names
|
|
species = ["Homo sapiens", "Pan troglodytes", "Mus musculus"]
|
|
name2taxid = ncbi.get_name_translator(species)
|
|
taxids = [name2taxid[sp][0] for sp in species]
|
|
|
|
# Get minimal tree connecting taxa
|
|
tree = ncbi.get_topology(taxids)
|
|
|
|
# Annotate nodes with taxonomy info
|
|
for node in tree.traverse():
|
|
if hasattr(node, "sci_name"):
|
|
print(f"{node.sci_name} - Rank: {node.rank} - TaxID: {node.taxid}")
|
|
```
|
|
|
|
**Annotating existing trees:**
|
|
|
|
```python
|
|
# Get taxonomy info for tree leaves
|
|
for leaf in tree:
|
|
species = extract_species_from_name(leaf.name)
|
|
taxid = ncbi.get_name_translator([species])[species][0]
|
|
|
|
# Get lineage
|
|
lineage = ncbi.get_lineage(taxid)
|
|
ranks = ncbi.get_rank(lineage)
|
|
names = ncbi.get_taxid_translator(lineage)
|
|
|
|
# Add to node
|
|
leaf.add_feature("taxid", taxid)
|
|
leaf.add_feature("lineage", [names[t] for t in lineage])
|
|
```
|
|
|
|
### 4. Tree Visualization
|
|
|
|
Create publication-quality tree visualizations:
|
|
|
|
- **Output formats**: PNG (raster), PDF, and SVG (vector) for publications
|
|
- **Layout modes**: Rectangular and circular tree layouts
|
|
- **Interactive GUI**: Explore trees interactively with zoom, pan, and search
|
|
- **Custom styling**: NodeStyle for node appearance (colors, shapes, sizes)
|
|
- **Faces**: Add graphical elements (text, images, charts, heatmaps) to nodes
|
|
- **Layout functions**: Dynamic styling based on node properties
|
|
|
|
**Basic visualization workflow:**
|
|
|
|
```python
|
|
from ete3 import Tree, TreeStyle, NodeStyle
|
|
|
|
tree = Tree("tree.nw")
|
|
|
|
# Configure tree style
|
|
ts = TreeStyle()
|
|
ts.show_leaf_name = True
|
|
ts.show_branch_support = True
|
|
ts.scale = 50 # pixels per branch length unit
|
|
|
|
# Style nodes
|
|
for node in tree.traverse():
|
|
nstyle = NodeStyle()
|
|
|
|
if node.is_leaf():
|
|
nstyle["fgcolor"] = "blue"
|
|
nstyle["size"] = 8
|
|
else:
|
|
# Color by support
|
|
if node.support > 0.9:
|
|
nstyle["fgcolor"] = "darkgreen"
|
|
else:
|
|
nstyle["fgcolor"] = "red"
|
|
nstyle["size"] = 5
|
|
|
|
node.set_style(nstyle)
|
|
|
|
# Render to file
|
|
tree.render("tree.pdf", tree_style=ts)
|
|
tree.render("tree.png", w=800, h=600, units="px", dpi=300)
|
|
```
|
|
|
|
Use `scripts/quick_visualize.py` for rapid visualization:
|
|
|
|
```bash
|
|
# Basic visualization
|
|
python scripts/quick_visualize.py tree.nw output.pdf
|
|
|
|
# Circular layout with custom styling
|
|
python scripts/quick_visualize.py tree.nw output.pdf --mode c --color-by-support
|
|
|
|
# High-resolution PNG
|
|
python scripts/quick_visualize.py tree.nw output.png --width 1200 --height 800 --units px --dpi 300
|
|
|
|
# Custom title and styling
|
|
python scripts/quick_visualize.py tree.nw output.pdf --title "Species Phylogeny" --show-support
|
|
```
|
|
|
|
**Advanced visualization with faces:**
|
|
|
|
```python
|
|
from ete3 import Tree, TreeStyle, TextFace, CircleFace
|
|
|
|
tree = Tree("tree.nw")
|
|
|
|
# Add features to nodes
|
|
for leaf in tree:
|
|
leaf.add_feature("habitat", "marine" if "fish" in leaf.name else "land")
|
|
|
|
# Layout function
|
|
def layout(node):
|
|
if node.is_leaf():
|
|
# Add colored circle
|
|
color = "blue" if node.habitat == "marine" else "green"
|
|
circle = CircleFace(radius=5, color=color)
|
|
node.add_face(circle, column=0, position="aligned")
|
|
|
|
# Add label
|
|
label = TextFace(node.name, fsize=10)
|
|
node.add_face(label, column=1, position="aligned")
|
|
|
|
ts = TreeStyle()
|
|
ts.layout_fn = layout
|
|
ts.show_leaf_name = False
|
|
|
|
tree.render("annotated_tree.pdf", tree_style=ts)
|
|
```
|
|
|
|
### 5. Clustering Analysis
|
|
|
|
Analyze hierarchical clustering results with data integration:
|
|
|
|
- **ClusterTree**: Specialized class for clustering dendrograms
|
|
- **Data matrix linking**: Connect tree leaves to numerical profiles
|
|
- **Cluster metrics**: Silhouette coefficient, Dunn index, inter/intra-cluster distances
|
|
- **Validation**: Test cluster quality with different distance metrics
|
|
- **Heatmap visualization**: Display data matrices alongside trees
|
|
|
|
**Clustering workflow:**
|
|
|
|
```python
|
|
from ete3 import ClusterTree
|
|
|
|
# Load tree with data matrix
|
|
matrix = """#Names\tSample1\tSample2\tSample3
|
|
Gene1\t1.5\t2.3\t0.8
|
|
Gene2\t0.9\t1.1\t1.8
|
|
Gene3\t2.1\t2.5\t0.5"""
|
|
|
|
tree = ClusterTree("((Gene1,Gene2),Gene3);", text_array=matrix)
|
|
|
|
# Evaluate cluster quality
|
|
for node in tree.traverse():
|
|
if not node.is_leaf():
|
|
silhouette = node.get_silhouette()
|
|
dunn = node.get_dunn()
|
|
|
|
print(f"Cluster: {node.name}")
|
|
print(f" Silhouette: {silhouette:.3f}")
|
|
print(f" Dunn index: {dunn:.3f}")
|
|
|
|
# Visualize with heatmap
|
|
tree.show("heatmap")
|
|
```
|
|
|
|
### 6. Tree Comparison
|
|
|
|
Quantify topological differences between trees:
|
|
|
|
- **Robinson-Foulds distance**: Standard metric for tree comparison
|
|
- **Normalized RF**: Scale-invariant distance (0.0 to 1.0)
|
|
- **Partition analysis**: Identify unique and shared bipartitions
|
|
- **Consensus trees**: Analyze support across multiple trees
|
|
- **Batch comparison**: Compare multiple trees pairwise
|
|
|
|
**Compare two trees:**
|
|
|
|
```python
|
|
from ete3 import Tree
|
|
|
|
tree1 = Tree("tree1.nw")
|
|
tree2 = Tree("tree2.nw")
|
|
|
|
# Calculate RF distance
|
|
rf, max_rf, common_leaves, parts_t1, parts_t2 = tree1.robinson_foulds(tree2)
|
|
|
|
print(f"RF distance: {rf}/{max_rf}")
|
|
print(f"Normalized RF: {rf/max_rf:.3f}")
|
|
print(f"Common leaves: {len(common_leaves)}")
|
|
|
|
# Find unique partitions
|
|
unique_t1 = parts_t1 - parts_t2
|
|
unique_t2 = parts_t2 - parts_t1
|
|
|
|
print(f"Unique to tree1: {len(unique_t1)}")
|
|
print(f"Unique to tree2: {len(unique_t2)}")
|
|
```
|
|
|
|
**Compare multiple trees:**
|
|
|
|
```python
|
|
import numpy as np
|
|
|
|
trees = [Tree(f"tree{i}.nw") for i in range(4)]
|
|
|
|
# Create distance matrix
|
|
n = len(trees)
|
|
dist_matrix = np.zeros((n, n))
|
|
|
|
for i in range(n):
|
|
for j in range(i+1, n):
|
|
rf, max_rf, _, _, _ = trees[i].robinson_foulds(trees[j])
|
|
norm_rf = rf / max_rf if max_rf > 0 else 0
|
|
dist_matrix[i, j] = norm_rf
|
|
dist_matrix[j, i] = norm_rf
|
|
```
|
|
|
|
## Installation and Setup
|
|
|
|
Install ETE toolkit:
|
|
|
|
```bash
|
|
# Basic installation
|
|
pip install ete3
|
|
|
|
# With external dependencies for rendering (optional but recommended)
|
|
# On macOS:
|
|
brew install qt@5
|
|
|
|
# On Ubuntu/Debian:
|
|
sudo apt-get install python3-pyqt5 python3-pyqt5.qtsvg
|
|
|
|
# For full features including GUI
|
|
pip install ete3[gui]
|
|
```
|
|
|
|
**First-time NCBI Taxonomy setup:**
|
|
|
|
The first time NCBITaxa is instantiated, it automatically downloads the NCBI taxonomy database (~300MB) to `~/.etetoolkit/taxa.sqlite`. This happens only once:
|
|
|
|
```python
|
|
from ete3 import NCBITaxa
|
|
ncbi = NCBITaxa() # Downloads database on first run
|
|
```
|
|
|
|
Update taxonomy database:
|
|
|
|
```python
|
|
ncbi.update_taxonomy_database() # Download latest NCBI data
|
|
```
|
|
|
|
## Common Use Cases
|
|
|
|
### Use Case 1: Phylogenomic Pipeline
|
|
|
|
Complete workflow from gene tree to ortholog identification:
|
|
|
|
```python
|
|
from ete3 import PhyloTree, NCBITaxa
|
|
|
|
# 1. Load gene tree with alignment
|
|
tree = PhyloTree("gene_tree.nw", alignment="alignment.fasta")
|
|
|
|
# 2. Configure species naming
|
|
tree.set_species_naming_function(lambda x: x.split("_")[0])
|
|
|
|
# 3. Detect evolutionary events
|
|
tree.get_descendant_evol_events()
|
|
|
|
# 4. Annotate with taxonomy
|
|
ncbi = NCBITaxa()
|
|
for leaf in tree:
|
|
if leaf.species in species_to_taxid:
|
|
taxid = species_to_taxid[leaf.species]
|
|
lineage = ncbi.get_lineage(taxid)
|
|
leaf.add_feature("lineage", lineage)
|
|
|
|
# 5. Extract ortholog groups
|
|
ortho_groups = tree.get_speciation_trees()
|
|
|
|
# 6. Save and visualize
|
|
for i, ortho in enumerate(ortho_groups):
|
|
ortho.write(outfile=f"ortho_{i}.nw")
|
|
```
|
|
|
|
### Use Case 2: Tree Preprocessing and Formatting
|
|
|
|
Batch process trees for analysis:
|
|
|
|
```bash
|
|
# Convert format
|
|
python scripts/tree_operations.py convert input.nw output.nw --in-format 0 --out-format 1
|
|
|
|
# Root at midpoint
|
|
python scripts/tree_operations.py reroot input.nw rooted.nw --midpoint
|
|
|
|
# Prune to focal taxa
|
|
python scripts/tree_operations.py prune rooted.nw pruned.nw --keep-taxa taxa_list.txt
|
|
|
|
# Get statistics
|
|
python scripts/tree_operations.py stats pruned.nw
|
|
```
|
|
|
|
### Use Case 3: Publication-Quality Figures
|
|
|
|
Create styled visualizations:
|
|
|
|
```python
|
|
from ete3 import Tree, TreeStyle, NodeStyle, TextFace
|
|
|
|
tree = Tree("tree.nw")
|
|
|
|
# Define clade colors
|
|
clade_colors = {
|
|
"Mammals": "red",
|
|
"Birds": "blue",
|
|
"Fish": "green"
|
|
}
|
|
|
|
def layout(node):
|
|
# Highlight clades
|
|
if node.is_leaf():
|
|
for clade, color in clade_colors.items():
|
|
if clade in node.name:
|
|
nstyle = NodeStyle()
|
|
nstyle["fgcolor"] = color
|
|
nstyle["size"] = 8
|
|
node.set_style(nstyle)
|
|
else:
|
|
# Add support values
|
|
if node.support > 0.95:
|
|
support = TextFace(f"{node.support:.2f}", fsize=8)
|
|
node.add_face(support, column=0, position="branch-top")
|
|
|
|
ts = TreeStyle()
|
|
ts.layout_fn = layout
|
|
ts.show_scale = True
|
|
|
|
# Render for publication
|
|
tree.render("figure.pdf", w=200, units="mm", tree_style=ts)
|
|
tree.render("figure.svg", tree_style=ts) # Editable vector
|
|
```
|
|
|
|
### Use Case 4: Automated Tree Analysis
|
|
|
|
Process multiple trees systematically:
|
|
|
|
```python
|
|
from ete3 import Tree
|
|
import os
|
|
|
|
input_dir = "trees"
|
|
output_dir = "processed"
|
|
|
|
for filename in os.listdir(input_dir):
|
|
if filename.endswith(".nw"):
|
|
tree = Tree(os.path.join(input_dir, filename))
|
|
|
|
# Standardize: midpoint root, resolve polytomies
|
|
midpoint = tree.get_midpoint_outgroup()
|
|
tree.set_outgroup(midpoint)
|
|
tree.resolve_polytomy(recursive=True)
|
|
|
|
# Filter low support branches
|
|
for node in tree.traverse():
|
|
if hasattr(node, 'support') and node.support < 0.5:
|
|
if not node.is_leaf() and not node.is_root():
|
|
node.delete()
|
|
|
|
# Save processed tree
|
|
output_file = os.path.join(output_dir, f"processed_{filename}")
|
|
tree.write(outfile=output_file)
|
|
```
|
|
|
|
## Reference Documentation
|
|
|
|
For comprehensive API documentation, code examples, and detailed guides, refer to the following resources in the `references/` directory:
|
|
|
|
- **`api_reference.md`**: Complete API documentation for all ETE classes and methods (Tree, PhyloTree, ClusterTree, NCBITaxa), including parameters, return types, and code examples
|
|
- **`workflows.md`**: Common workflow patterns organized by task (tree operations, phylogenetic analysis, tree comparison, taxonomy integration, clustering analysis)
|
|
- **`visualization.md`**: Comprehensive visualization guide covering TreeStyle, NodeStyle, Faces, layout functions, and advanced visualization techniques
|
|
|
|
Load these references when detailed information is needed:
|
|
|
|
```python
|
|
# To use API reference
|
|
# Read references/api_reference.md for complete method signatures and parameters
|
|
|
|
# To implement workflows
|
|
# Read references/workflows.md for step-by-step workflow examples
|
|
|
|
# To create visualizations
|
|
# Read references/visualization.md for styling and rendering options
|
|
```
|
|
|
|
## Troubleshooting
|
|
|
|
**Import errors:**
|
|
|
|
```bash
|
|
# If "ModuleNotFoundError: No module named 'ete3'"
|
|
pip install ete3
|
|
|
|
# For GUI and rendering issues
|
|
pip install ete3[gui]
|
|
```
|
|
|
|
**Rendering issues:**
|
|
|
|
If `tree.render()` or `tree.show()` fails with Qt-related errors, install system dependencies:
|
|
|
|
```bash
|
|
# macOS
|
|
brew install qt@5
|
|
|
|
# Ubuntu/Debian
|
|
sudo apt-get install python3-pyqt5 python3-pyqt5.qtsvg
|
|
```
|
|
|
|
**NCBI Taxonomy database:**
|
|
|
|
If database download fails or becomes corrupted:
|
|
|
|
```python
|
|
from ete3 import NCBITaxa
|
|
ncbi = NCBITaxa()
|
|
ncbi.update_taxonomy_database() # Redownload database
|
|
```
|
|
|
|
**Memory issues with large trees:**
|
|
|
|
For very large trees (>10,000 leaves), use iterators instead of list comprehensions:
|
|
|
|
```python
|
|
# Memory-efficient iteration
|
|
for leaf in tree.iter_leaves():
|
|
process(leaf)
|
|
|
|
# Instead of
|
|
for leaf in tree.get_leaves(): # Loads all into memory
|
|
process(leaf)
|
|
```
|
|
|
|
## Newick Format Reference
|
|
|
|
ETE supports multiple Newick format specifications (0-100):
|
|
|
|
- **Format 0**: Flexible with branch lengths (default)
|
|
- **Format 1**: With internal node names
|
|
- **Format 2**: With bootstrap/support values
|
|
- **Format 5**: Internal node names + branch lengths
|
|
- **Format 8**: All features (names, distances, support)
|
|
- **Format 9**: Leaf names only
|
|
- **Format 100**: Topology only
|
|
|
|
Specify format when reading/writing:
|
|
|
|
```python
|
|
tree = Tree("tree.nw", format=1)
|
|
tree.write(outfile="output.nw", format=5)
|
|
```
|
|
|
|
NHX (New Hampshire eXtended) format preserves custom features:
|
|
|
|
```python
|
|
tree.write(outfile="tree.nhx", features=["habitat", "temperature", "depth"])
|
|
```
|
|
|
|
## Best Practices
|
|
|
|
1. **Preserve branch lengths**: Use `preserve_branch_length=True` when pruning for phylogenetic analysis
|
|
2. **Cache content**: Use `get_cached_content()` for repeated access to node contents on large trees
|
|
3. **Use iterators**: Employ `iter_*` methods for memory-efficient processing of large trees
|
|
4. **Choose appropriate traversal**: Postorder for bottom-up analysis, preorder for top-down
|
|
5. **Validate monophyly**: Always check returned clade type (monophyletic/paraphyletic/polyphyletic)
|
|
6. **Vector formats for publication**: Use PDF or SVG for publication figures (scalable, editable)
|
|
7. **Interactive testing**: Use `tree.show()` to test visualizations before rendering to file
|
|
8. **PhyloTree for phylogenetics**: Use PhyloTree class for gene trees and evolutionary analysis
|
|
9. **Copy method selection**: "newick" for speed, "cpickle" for full fidelity, "deepcopy" for complex objects
|
|
10. **NCBI query caching**: Store NCBI taxonomy query results to avoid repeated database access
|