mirror of
https://github.com/K-Dense-AI/claude-scientific-skills.git
synced 2026-01-26 16:58:56 +08:00
491 lines
13 KiB
Markdown
491 lines
13 KiB
Markdown
# PyTorch Lightning API Reference
|
|
|
|
Comprehensive reference for PyTorch Lightning core APIs, hooks, and components.
|
|
|
|
## LightningModule
|
|
|
|
The LightningModule is the core abstraction for organizing PyTorch code in Lightning.
|
|
|
|
### Essential Hooks
|
|
|
|
#### `__init__(self, *args, **kwargs)`
|
|
Initialize the model, define layers, and save hyperparameters.
|
|
|
|
```python
|
|
def __init__(self, learning_rate=1e-3, hidden_dim=128):
|
|
super().__init__()
|
|
self.save_hyperparameters() # Saves all args to self.hparams
|
|
self.model = nn.Sequential(...)
|
|
```
|
|
|
|
#### `forward(self, x)`
|
|
Define the forward pass for inference. Called by `predict_step` by default.
|
|
|
|
```python
|
|
def forward(self, x):
|
|
return self.model(x)
|
|
```
|
|
|
|
#### `training_step(self, batch, batch_idx)`
|
|
Define the training loop logic. Return loss for automatic optimization.
|
|
|
|
```python
|
|
def training_step(self, batch, batch_idx):
|
|
x, y = batch
|
|
y_hat = self(x)
|
|
loss = F.cross_entropy(y_hat, y)
|
|
self.log('train_loss', loss)
|
|
return loss
|
|
```
|
|
|
|
#### `validation_step(self, batch, batch_idx)`
|
|
Define the validation loop logic. Model automatically in eval mode with no gradients.
|
|
|
|
```python
|
|
def validation_step(self, batch, batch_idx):
|
|
x, y = batch
|
|
y_hat = self(x)
|
|
loss = F.cross_entropy(y_hat, y)
|
|
self.log('val_loss', loss)
|
|
return loss
|
|
```
|
|
|
|
#### `test_step(self, batch, batch_idx)`
|
|
Define the test loop logic. Only runs when `trainer.test()` is called.
|
|
|
|
```python
|
|
def test_step(self, batch, batch_idx):
|
|
x, y = batch
|
|
y_hat = self(x)
|
|
loss = F.cross_entropy(y_hat, y)
|
|
self.log('test_loss', loss)
|
|
return loss
|
|
```
|
|
|
|
#### `predict_step(self, batch, batch_idx, dataloader_idx=0)`
|
|
Define prediction logic for inference. Defaults to calling `forward()`.
|
|
|
|
```python
|
|
def predict_step(self, batch, batch_idx, dataloader_idx=0):
|
|
x, y = batch
|
|
return self(x)
|
|
```
|
|
|
|
#### `configure_optimizers(self)`
|
|
Return optimizer(s) and optional learning rate scheduler(s).
|
|
|
|
```python
|
|
def configure_optimizers(self):
|
|
optimizer = torch.optim.Adam(self.parameters(), lr=self.hparams.learning_rate)
|
|
scheduler = ReduceLROnPlateau(optimizer, mode='min')
|
|
return {
|
|
"optimizer": optimizer,
|
|
"lr_scheduler": {
|
|
"scheduler": scheduler,
|
|
"monitor": "val_loss",
|
|
"interval": "epoch",
|
|
"frequency": 1,
|
|
}
|
|
}
|
|
```
|
|
|
|
### Lifecycle Hooks
|
|
|
|
#### Epoch-Level Hooks
|
|
- `on_train_epoch_start()` - Called at the start of each training epoch
|
|
- `on_train_epoch_end()` - Called at the end of each training epoch
|
|
- `on_validation_epoch_start()` - Called at the start of validation epoch
|
|
- `on_validation_epoch_end()` - Called at the end of validation epoch
|
|
- `on_test_epoch_start()` - Called at the start of test epoch
|
|
- `on_test_epoch_end()` - Called at the end of test epoch
|
|
|
|
#### Batch-Level Hooks
|
|
- `on_train_batch_start(batch, batch_idx)` - Called before training batch
|
|
- `on_train_batch_end(outputs, batch, batch_idx)` - Called after training batch
|
|
- `on_validation_batch_start(batch, batch_idx)` - Called before validation batch
|
|
- `on_validation_batch_end(outputs, batch, batch_idx)` - Called after validation batch
|
|
|
|
#### Training Lifecycle
|
|
- `on_fit_start()` - Called at the start of fit
|
|
- `on_fit_end()` - Called at the end of fit
|
|
- `on_train_start()` - Called at the start of training
|
|
- `on_train_end()` - Called at the end of training
|
|
|
|
### Logging
|
|
|
|
#### `self.log(name, value, **kwargs)`
|
|
Log a metric to all configured loggers.
|
|
|
|
**Common Parameters:**
|
|
- `on_step` (bool) - Log at each batch step
|
|
- `on_epoch` (bool) - Log at the end of epoch (automatically aggregated)
|
|
- `prog_bar` (bool) - Display in progress bar
|
|
- `logger` (bool) - Send to logger
|
|
- `sync_dist` (bool) - Synchronize across all distributed processes
|
|
- `reduce_fx` (str) - Reduction function for distributed ("mean", "sum", etc.)
|
|
|
|
```python
|
|
self.log('train_loss', loss, on_step=True, on_epoch=True, prog_bar=True)
|
|
```
|
|
|
|
#### `self.log_dict(dictionary, **kwargs)`
|
|
Log multiple metrics at once.
|
|
|
|
```python
|
|
metrics = {'loss': loss, 'acc': acc, 'f1': f1}
|
|
self.log_dict(metrics, on_step=True, on_epoch=True)
|
|
```
|
|
|
|
### Device Management
|
|
|
|
- `self.device` - Current device (automatically managed)
|
|
- `self.to(device)` - Move model to device (usually handled automatically)
|
|
|
|
**Best Practice:** Create tensors on model's device:
|
|
```python
|
|
new_tensor = torch.zeros(10, device=self.device)
|
|
```
|
|
|
|
### Hyperparameter Management
|
|
|
|
#### `self.save_hyperparameters(*args, **kwargs)`
|
|
Automatically save init arguments to `self.hparams` and checkpoints.
|
|
|
|
```python
|
|
def __init__(self, learning_rate, hidden_dim):
|
|
super().__init__()
|
|
self.save_hyperparameters() # Saves all args
|
|
# Access via self.hparams.learning_rate, self.hparams.hidden_dim
|
|
```
|
|
|
|
---
|
|
|
|
## Trainer
|
|
|
|
The Trainer automates the training loop and engineering complexity.
|
|
|
|
### Core Parameters
|
|
|
|
#### Training Duration
|
|
- `max_epochs` (int) - Maximum number of epochs (default: 1000)
|
|
- `min_epochs` (int) - Minimum number of epochs
|
|
- `max_steps` (int) - Maximum number of optimizer steps
|
|
- `min_steps` (int) - Minimum number of optimizer steps
|
|
- `max_time` (str/dict) - Maximum training time ("DD:HH:MM:SS" or dict)
|
|
|
|
#### Hardware Configuration
|
|
- `accelerator` (str) - Hardware to use: "cpu", "gpu", "tpu", "auto"
|
|
- `devices` (int/list) - Number or specific device IDs: 1, 4, [0,2], "auto"
|
|
- `num_nodes` (int) - Number of GPU nodes for distributed training
|
|
- `strategy` (str) - Training strategy: "ddp", "fsdp", "deepspeed", etc.
|
|
|
|
#### Data Management
|
|
- `limit_train_batches` (int/float) - Limit training batches (0.0-1.0 for %, int for count)
|
|
- `limit_val_batches` (int/float) - Limit validation batches
|
|
- `limit_test_batches` (int/float) - Limit test batches
|
|
- `limit_predict_batches` (int/float) - Limit prediction batches
|
|
|
|
#### Validation
|
|
- `check_val_every_n_epoch` (int) - Run validation every N epochs
|
|
- `val_check_interval` (int/float) - Validate every N batches or fraction
|
|
- `num_sanity_val_steps` (int) - Validation steps before training (default: 2)
|
|
|
|
#### Optimization
|
|
- `gradient_clip_val` (float) - Clip gradients by value
|
|
- `gradient_clip_algorithm` (str) - "value" or "norm"
|
|
- `accumulate_grad_batches` (int) - Accumulate gradients over K batches
|
|
- `precision` (str) - Training precision: "32-true", "16-mixed", "bf16-mixed", "64-true"
|
|
|
|
#### Logging and Checkpointing
|
|
- `logger` (Logger/list) - Logger instance(s) or True/False
|
|
- `log_every_n_steps` (int) - Logging frequency
|
|
- `enable_checkpointing` (bool) - Enable automatic checkpointing
|
|
- `callbacks` (list) - List of callback instances
|
|
- `default_root_dir` (str) - Default path for logs and checkpoints
|
|
|
|
#### Debugging
|
|
- `fast_dev_run` (bool/int) - Run N batches for quick testing
|
|
- `overfit_batches` (int/float) - Overfit on limited data for debugging
|
|
- `detect_anomaly` (bool) - Enable PyTorch anomaly detection
|
|
- `profiler` (str/Profiler) - Profile training: "simple", "advanced", or custom
|
|
|
|
#### Performance
|
|
- `benchmark` (bool) - Enable cudnn.benchmark for performance
|
|
- `deterministic` (bool) - Enable deterministic training for reproducibility
|
|
- `sync_batchnorm` (bool) - Synchronize batch norm across GPUs
|
|
|
|
### Training Methods
|
|
|
|
#### `trainer.fit(model, train_dataloaders=None, val_dataloaders=None, datamodule=None, ckpt_path=None)`
|
|
Run the full training routine.
|
|
|
|
```python
|
|
trainer.fit(model, train_loader, val_loader)
|
|
# Or with DataModule
|
|
trainer.fit(model, datamodule=dm)
|
|
# Resume from checkpoint
|
|
trainer.fit(model, train_loader, val_loader, ckpt_path="path/to/checkpoint.ckpt")
|
|
```
|
|
|
|
#### `trainer.validate(model, dataloaders=None, datamodule=None, ckpt_path=None)`
|
|
Run validation independently.
|
|
|
|
```python
|
|
trainer.validate(model, val_loader)
|
|
```
|
|
|
|
#### `trainer.test(model, dataloaders=None, datamodule=None, ckpt_path=None)`
|
|
Run test evaluation.
|
|
|
|
```python
|
|
trainer.test(model, test_loader)
|
|
# Or load from checkpoint
|
|
trainer.test(ckpt_path="best_model.ckpt", datamodule=dm)
|
|
```
|
|
|
|
#### `trainer.predict(model, dataloaders=None, datamodule=None, ckpt_path=None)`
|
|
Run inference predictions.
|
|
|
|
```python
|
|
predictions = trainer.predict(model, predict_loader)
|
|
```
|
|
|
|
---
|
|
|
|
## LightningDataModule
|
|
|
|
Encapsulates all data processing logic in a reusable class.
|
|
|
|
### Core Methods
|
|
|
|
#### `prepare_data(self)`
|
|
Download and prepare data (called once on single process).
|
|
Do NOT set state here (no self.x = y).
|
|
|
|
```python
|
|
def prepare_data(self):
|
|
# Download datasets
|
|
datasets.MNIST(self.data_dir, train=True, download=True)
|
|
datasets.MNIST(self.data_dir, train=False, download=True)
|
|
```
|
|
|
|
#### `setup(self, stage=None)`
|
|
Load data and create splits (called on every process/GPU).
|
|
Setting state is OK here.
|
|
|
|
**stage parameter:** "fit", "validate", "test", or "predict"
|
|
|
|
```python
|
|
def setup(self, stage=None):
|
|
if stage == "fit" or stage is None:
|
|
full_dataset = datasets.MNIST(self.data_dir, train=True)
|
|
self.train_dataset, self.val_dataset = random_split(full_dataset, [55000, 5000])
|
|
|
|
if stage == "test" or stage is None:
|
|
self.test_dataset = datasets.MNIST(self.data_dir, train=False)
|
|
```
|
|
|
|
#### DataLoader Methods
|
|
- `train_dataloader(self)` - Return training DataLoader
|
|
- `val_dataloader(self)` - Return validation DataLoader
|
|
- `test_dataloader(self)` - Return test DataLoader
|
|
- `predict_dataloader(self)` - Return prediction DataLoader
|
|
|
|
```python
|
|
def train_dataloader(self):
|
|
return DataLoader(self.train_dataset, batch_size=32, shuffle=True)
|
|
```
|
|
|
|
### Optional Methods
|
|
- `teardown(stage=None)` - Cleanup after training/testing
|
|
- `state_dict()` - Save state for checkpointing
|
|
- `load_state_dict(state_dict)` - Load state from checkpoint
|
|
|
|
---
|
|
|
|
## Callbacks
|
|
|
|
Extend training with modular, reusable functionality.
|
|
|
|
### Built-in Callbacks
|
|
|
|
#### ModelCheckpoint
|
|
Save model checkpoints based on monitored metrics.
|
|
|
|
```python
|
|
from lightning.pytorch.callbacks import ModelCheckpoint
|
|
|
|
checkpoint_callback = ModelCheckpoint(
|
|
dirpath='checkpoints/',
|
|
filename='{epoch}-{val_loss:.2f}',
|
|
monitor='val_loss',
|
|
mode='min',
|
|
save_top_k=3,
|
|
save_last=True,
|
|
verbose=True,
|
|
)
|
|
```
|
|
|
|
**Key Parameters:**
|
|
- `monitor` - Metric to monitor
|
|
- `mode` - "min" or "max"
|
|
- `save_top_k` - Save top K models
|
|
- `save_last` - Always save last checkpoint
|
|
- `every_n_epochs` - Save every N epochs
|
|
|
|
#### EarlyStopping
|
|
Stop training when metric stops improving.
|
|
|
|
```python
|
|
from lightning.pytorch.callbacks import EarlyStopping
|
|
|
|
early_stop = EarlyStopping(
|
|
monitor='val_loss',
|
|
patience=10,
|
|
mode='min',
|
|
verbose=True,
|
|
)
|
|
```
|
|
|
|
#### LearningRateMonitor
|
|
Log learning rate values.
|
|
|
|
```python
|
|
from lightning.pytorch.callbacks import LearningRateMonitor
|
|
|
|
lr_monitor = LearningRateMonitor(logging_interval='epoch')
|
|
```
|
|
|
|
#### RichProgressBar
|
|
Display rich progress bar with metrics.
|
|
|
|
```python
|
|
from lightning.pytorch.callbacks import RichProgressBar
|
|
|
|
progress_bar = RichProgressBar()
|
|
```
|
|
|
|
### Custom Callbacks
|
|
|
|
Create custom callbacks by inheriting from `Callback`.
|
|
|
|
```python
|
|
from lightning.pytorch.callbacks import Callback
|
|
|
|
class MyCallback(Callback):
|
|
def on_train_start(self, trainer, pl_module):
|
|
print("Training starting!")
|
|
|
|
def on_train_epoch_end(self, trainer, pl_module):
|
|
print(f"Epoch {trainer.current_epoch} ended")
|
|
|
|
def on_validation_end(self, trainer, pl_module):
|
|
val_loss = trainer.callback_metrics.get('val_loss')
|
|
print(f"Validation loss: {val_loss}")
|
|
```
|
|
|
|
**Common Hooks:**
|
|
- `on_train_start/end`
|
|
- `on_train_epoch_start/end`
|
|
- `on_validation_epoch_start/end`
|
|
- `on_test_epoch_start/end`
|
|
- `on_before_backward/on_after_backward`
|
|
- `on_before_optimizer_step`
|
|
|
|
---
|
|
|
|
## Loggers
|
|
|
|
Track experiments with various logging frameworks.
|
|
|
|
### TensorBoardLogger
|
|
```python
|
|
from lightning.pytorch.loggers import TensorBoardLogger
|
|
|
|
logger = TensorBoardLogger(save_dir='logs/', name='my_experiment')
|
|
trainer = Trainer(logger=logger)
|
|
```
|
|
|
|
### WandbLogger
|
|
```python
|
|
from lightning.pytorch.loggers import WandbLogger
|
|
|
|
logger = WandbLogger(project='my_project', name='experiment_1')
|
|
trainer = Trainer(logger=logger)
|
|
```
|
|
|
|
### MLFlowLogger
|
|
```python
|
|
from lightning.pytorch.loggers import MLFlowLogger
|
|
|
|
logger = MLFlowLogger(experiment_name='my_exp', tracking_uri='file:./ml-runs')
|
|
trainer = Trainer(logger=logger)
|
|
```
|
|
|
|
### CSVLogger
|
|
```python
|
|
from lightning.pytorch.loggers import CSVLogger
|
|
|
|
logger = CSVLogger(save_dir='logs/', name='my_experiment')
|
|
trainer = Trainer(logger=logger)
|
|
```
|
|
|
|
### Multiple Loggers
|
|
```python
|
|
loggers = [
|
|
TensorBoardLogger('logs/'),
|
|
CSVLogger('logs/'),
|
|
]
|
|
trainer = Trainer(logger=loggers)
|
|
```
|
|
|
|
---
|
|
|
|
## Common Patterns
|
|
|
|
### Reproducibility
|
|
```python
|
|
from lightning.pytorch import seed_everything
|
|
|
|
seed_everything(42, workers=True)
|
|
trainer = Trainer(deterministic=True)
|
|
```
|
|
|
|
### Mixed Precision Training
|
|
```python
|
|
trainer = Trainer(precision='16-mixed') # or 'bf16-mixed'
|
|
```
|
|
|
|
### Multi-GPU Training
|
|
```python
|
|
# Data parallel (DDP)
|
|
trainer = Trainer(accelerator='gpu', devices=4, strategy='ddp')
|
|
|
|
# Model parallel (FSDP)
|
|
trainer = Trainer(accelerator='gpu', devices=4, strategy='fsdp')
|
|
```
|
|
|
|
### Gradient Accumulation
|
|
```python
|
|
trainer = Trainer(accumulate_grad_batches=4) # Effective batch size = 4x
|
|
```
|
|
|
|
### Learning Rate Finding
|
|
```python
|
|
from lightning.pytorch.tuner import Tuner
|
|
|
|
trainer = Trainer()
|
|
tuner = Tuner(trainer)
|
|
lr_finder = tuner.lr_find(model, train_dataloader)
|
|
model.hparams.learning_rate = lr_finder.suggestion()
|
|
```
|
|
|
|
### Loading from Checkpoint
|
|
```python
|
|
# Load model
|
|
model = MyLightningModule.load_from_checkpoint('checkpoint.ckpt')
|
|
|
|
# Resume training
|
|
trainer.fit(model, ckpt_path='checkpoint.ckpt')
|
|
```
|