Files
claude-scientific-skills/scientific-packages/pyopenms/references/algorithms.md
Timothy Kassis c7296b2661 Add PyOpenms
2025-10-20 17:26:45 -07:00

644 lines
16 KiB
Markdown

# pyOpenMS Algorithms Reference
This document provides comprehensive coverage of algorithms available in pyOpenMS for signal processing, feature detection, and quantification.
## Algorithm Usage Pattern
Most pyOpenMS algorithms follow a consistent pattern:
```python
import pyopenms as oms
# 1. Instantiate algorithm
algorithm = oms.AlgorithmName()
# 2. Get parameters
params = algorithm.getParameters()
# 3. Modify parameters
params.setValue("parameter_name", value)
# 4. Set parameters back
algorithm.setParameters(params)
# 5. Apply to data
algorithm.filterExperiment(exp) # or .process(), .run(), etc.
```
## Signal Processing Algorithms
### Smoothing Filters
#### GaussFilter - Gaussian Smoothing
Applies Gaussian smoothing to reduce noise.
```python
gauss = oms.GaussFilter()
# Configure parameters
params = gauss.getParameters()
params.setValue("gaussian_width", 0.2) # Gaussian width (larger = more smoothing)
params.setValue("ppm_tolerance", 10.0) # PPM tolerance for spacing
params.setValue("use_ppm_tolerance", "true")
gauss.setParameters(params)
# Apply to experiment
gauss.filterExperiment(exp)
# Or apply to single spectrum
spectrum_smoothed = oms.MSSpectrum()
gauss.filter(spectrum, spectrum_smoothed)
```
**Key Parameters:**
- `gaussian_width`: Width of Gaussian kernel (default: 0.2 Da)
- `ppm_tolerance`: Tolerance in ppm for spacing
- `use_ppm_tolerance`: Whether to use ppm instead of absolute spacing
#### SavitzkyGolayFilter
Applies Savitzky-Golay smoothing (polynomial fitting).
```python
sg_filter = oms.SavitzkyGolayFilter()
params = sg_filter.getParameters()
params.setValue("frame_length", 11) # Window size (must be odd)
params.setValue("polynomial_order", 3) # Polynomial degree
sg_filter.setParameters(params)
sg_filter.filterExperiment(exp)
```
**Key Parameters:**
- `frame_length`: Size of smoothing window (must be odd)
- `polynomial_order`: Degree of polynomial (typically 2-4)
### Peak Filtering
#### NLargest - Keep Top N Peaks
Retains only the N most intense peaks per spectrum.
```python
n_largest = oms.NLargest()
params = n_largest.getParameters()
params.setValue("n", 100) # Keep top 100 peaks
params.setValue("threshold", 0.0) # Optional minimum intensity
n_largest.setParameters(params)
n_largest.filterExperiment(exp)
```
**Key Parameters:**
- `n`: Number of peaks to keep per spectrum
- `threshold`: Minimum absolute intensity threshold
#### ThresholdMower - Intensity Threshold Filtering
Removes peaks below a specified intensity threshold.
```python
threshold_filter = oms.ThresholdMower()
params = threshold_filter.getParameters()
params.setValue("threshold", 1000.0) # Absolute intensity threshold
threshold_filter.setParameters(params)
threshold_filter.filterExperiment(exp)
```
**Key Parameters:**
- `threshold`: Absolute intensity cutoff
#### WindowMower - Window-Based Peak Selection
Divides m/z range into windows and keeps top N peaks per window.
```python
window_mower = oms.WindowMower()
params = window_mower.getParameters()
params.setValue("windowsize", 50.0) # Window size in Da (or Thomson)
params.setValue("peakcount", 10) # Peaks to keep per window
params.setValue("movetype", "jump") # "jump" or "slide"
window_mower.setParameters(params)
window_mower.filterExperiment(exp)
```
**Key Parameters:**
- `windowsize`: Size of m/z window (Da)
- `peakcount`: Number of peaks to retain per window
- `movetype`: "jump" (non-overlapping) or "slide" (overlapping windows)
#### BernNorm - Bernoulli Normalization
Statistical normalization based on Bernoulli distribution.
```python
bern_norm = oms.BernNorm()
params = bern_norm.getParameters()
params.setValue("threshold", 0.7) # Threshold for normalization
bern_norm.setParameters(params)
bern_norm.filterExperiment(exp)
```
### Spectrum Normalization
#### Normalizer
Normalizes spectrum intensities to unit total intensity or maximum intensity.
```python
normalizer = oms.Normalizer()
params = normalizer.getParameters()
params.setValue("method", "to_one") # "to_one" or "to_TIC"
normalizer.setParameters(params)
normalizer.filterExperiment(exp)
```
**Methods:**
- `to_one`: Normalize max peak to 1.0
- `to_TIC`: Normalize to total ion current = 1.0
#### Scaler
Scales intensities by a constant factor.
```python
scaler = oms.Scaler()
params = scaler.getParameters()
params.setValue("scaling", 1000.0) # Scaling factor
scaler.setParameters(params)
scaler.filterExperiment(exp)
```
## Centroiding and Peak Picking
### PeakPickerHiRes - High-Resolution Peak Picking
Converts profile spectra to centroid mode for high-resolution data.
```python
picker = oms.PeakPickerHiRes()
params = picker.getParameters()
params.setValue("signal_to_noise", 1.0) # S/N threshold
params.setValue("spacing_difference", 1.5) # Peak spacing factor
params.setValue("sn_win_len", 20.0) # S/N window length
params.setValue("sn_bin_count", 30) # Bins for S/N estimation
params.setValue("ms1_only", "false") # Process only MS1
params.setValue("ms_levels", [1, 2]) # MS levels to process
picker.setParameters(params)
# Pick peaks
exp_centroided = oms.MSExperiment()
picker.pickExperiment(exp, exp_centroided)
```
**Key Parameters:**
- `signal_to_noise`: Minimum signal-to-noise ratio
- `spacing_difference`: Minimum spacing between peaks
- `ms_levels`: List of MS levels to process
### PeakPickerWavelet - Wavelet-Based Peak Picking
Uses continuous wavelet transform for peak detection.
```python
wavelet_picker = oms.PeakPickerWavelet()
params = wavelet_picker.getParameters()
params.setValue("signal_to_noise", 1.0)
params.setValue("peak_width", 0.15) # Expected peak width (Da)
wavelet_picker.setParameters(params)
wavelet_picker.pickExperiment(exp, exp_centroided)
```
## Feature Detection
### FeatureFinder Algorithms
Feature finders detect 2D features (m/z and RT) in LC-MS data.
#### FeatureFinderMultiplex
For multiplex labeling experiments (SILAC, dimethyl labeling).
```python
ff = oms.FeatureFinderMultiplex()
params = ff.getParameters()
params.setValue("algorithm:labels", "[]") # Empty for label-free
params.setValue("algorithm:charge", "2:4") # Charge range
params.setValue("algorithm:rt_typical", 40.0) # Expected feature RT width
params.setValue("algorithm:rt_min", 2.0) # Minimum RT width
params.setValue("algorithm:mz_tolerance", 10.0) # m/z tolerance (ppm)
params.setValue("algorithm:intensity_cutoff", 1000.0) # Minimum intensity
ff.setParameters(params)
# Run feature detection
features = oms.FeatureMap()
ff.run(exp, features, oms.Param())
print(f"Found {features.size()} features")
```
**Key Parameters:**
- `algorithm:charge`: Charge state range to consider
- `algorithm:rt_typical`: Expected peak width in RT dimension
- `algorithm:mz_tolerance`: Mass tolerance in ppm
- `algorithm:intensity_cutoff`: Minimum intensity threshold
#### FeatureFinderCentroided
For centroided data, identifies isotope patterns and traces over RT.
```python
ff_centroided = oms.FeatureFinderCentroided()
params = ff_centroided.getParameters()
params.setValue("mass_trace:mz_tolerance", 10.0) # ppm
params.setValue("mass_trace:min_spectra", 5) # Min consecutive spectra
params.setValue("isotopic_pattern:charge_low", 1)
params.setValue("isotopic_pattern:charge_high", 4)
params.setValue("seed:min_score", 0.5)
ff_centroided.setParameters(params)
features = oms.FeatureMap()
seeds = oms.FeatureMap() # Optional seed features
ff_centroided.run(exp, features, params, seeds)
```
#### FeatureFinderIdentification
Uses peptide identifications to guide feature detection.
```python
ff_id = oms.FeatureFinderIdentification()
params = ff_id.getParameters()
params.setValue("extract:mz_window", 10.0) # ppm
params.setValue("extract:rt_window", 60.0) # seconds
params.setValue("detect:peak_width", 30.0) # Expected peak width
ff_id.setParameters(params)
# Requires peptide identifications
protein_ids = []
peptide_ids = []
features = oms.FeatureMap()
ff_id.run(exp, protein_ids, peptide_ids, features)
```
## Charge and Isotope Deconvolution
### Decharging and Charge State Deconvolution
#### FeatureDeconvolution
Resolves charge states and combines features.
```python
deconv = oms.FeatureDeconvolution()
params = deconv.getParameters()
params.setValue("charge_min", 1)
params.setValue("charge_max", 4)
params.setValue("q_value", 0.01) # FDR threshold
deconv.setParameters(params)
features_deconv = oms.FeatureMap()
consensus_map = oms.ConsensusMap()
deconv.compute(features, features_deconv, consensus_map)
```
## Map Alignment
### MapAlignmentAlgorithm
Aligns retention times across multiple LC-MS runs.
#### MapAlignmentAlgorithmPoseClustering
Pose clustering-based RT alignment.
```python
aligner = oms.MapAlignmentAlgorithmPoseClustering()
params = aligner.getParameters()
params.setValue("max_num_peaks_considered", 1000)
params.setValue("pairfinder:distance_MZ:max_difference", 0.3) # Da
params.setValue("pairfinder:distance_RT:max_difference", 60.0) # seconds
aligner.setParameters(params)
# Align multiple feature maps
feature_maps = [features1, features2, features3]
transformations = []
# Create reference (e.g., use first map)
reference = oms.FeatureMap(feature_maps[0])
# Align others to reference
for fm in feature_maps[1:]:
transformation = oms.TransformationDescription()
aligner.align(fm, reference, transformation)
transformations.append(transformation)
# Apply transformation
transformer = oms.MapAlignmentTransformer()
transformer.transformRetentionTimes(fm, transformation)
```
## Feature Linking
### FeatureGroupingAlgorithm
Links features across samples to create consensus features.
#### FeatureGroupingAlgorithmQT
Quality threshold-based feature linking.
```python
grouper = oms.FeatureGroupingAlgorithmQT()
params = grouper.getParameters()
params.setValue("distance_RT:max_difference", 60.0) # seconds
params.setValue("distance_MZ:max_difference", 10.0) # ppm
params.setValue("distance_MZ:unit", "ppm")
grouper.setParameters(params)
# Create consensus map
consensus_map = oms.ConsensusMap()
# Group features from multiple samples
feature_maps = [features1, features2, features3]
grouper.group(feature_maps, consensus_map)
print(f"Created {consensus_map.size()} consensus features")
```
#### FeatureGroupingAlgorithmKD
KD-tree based linking (faster for large datasets).
```python
grouper_kd = oms.FeatureGroupingAlgorithmKD()
params = grouper_kd.getParameters()
params.setValue("mz_unit", "ppm")
params.setValue("mz_tolerance", 10.0)
params.setValue("rt_tolerance", 30.0)
grouper_kd.setParameters(params)
consensus_map = oms.ConsensusMap()
grouper_kd.group(feature_maps, consensus_map)
```
## Chromatographic Analysis
### ElutionPeakDetection
Detects elution peaks in chromatograms.
```python
epd = oms.ElutionPeakDetection()
params = epd.getParameters()
params.setValue("chrom_peak_snr", 3.0) # Signal-to-noise threshold
params.setValue("chrom_fwhm", 5.0) # Expected FWHM (seconds)
epd.setParameters(params)
# Apply to chromatograms
for chrom in exp.getChromatograms():
peaks = epd.detectPeaks(chrom)
```
### MRMFeatureFinderScoring
Scoring and peak picking for targeted (MRM/SRM) experiments.
```python
mrm_finder = oms.MRMFeatureFinderScoring()
params = mrm_finder.getParameters()
params.setValue("TransitionGroupPicker:min_peak_width", 2.0)
params.setValue("TransitionGroupPicker:recalculate_peaks", "true")
params.setValue("TransitionGroupPicker:PeakPickerMRM:signal_to_noise", 1.0)
mrm_finder.setParameters(params)
# Requires chromatograms
features = oms.FeatureMap()
mrm_finder.pickExperiment(chrom_exp, features, targets, transformation, swath_maps)
```
## Quantification
### ProteinInference
Infers proteins from peptide identifications.
```python
protein_inference = oms.BasicProteinInferenceAlgorithm()
# Apply to identification results
protein_inference.run(peptide_ids, protein_ids)
```
### IsobaricQuantification
Quantification for isobaric labeling (TMT, iTRAQ).
```python
# For TMT/iTRAQ quantification
iso_quant = oms.IsobaricQuantification()
params = iso_quant.getParameters()
params.setValue("channel_116_description", "Sample1")
params.setValue("channel_117_description", "Sample2")
# ... configure all channels
iso_quant.setParameters(params)
# Run quantification
quant_method = oms.IsobaricQuantitationMethod.TMT_10PLEX
quant_info = oms.IsobaricQuantifierStatistics()
iso_quant.quantify(exp, quant_info)
```
## Data Processing
### BaselineFiltering
Removes baseline from spectra.
```python
baseline = oms.TopHatFilter()
params = baseline.getParameters()
params.setValue("struc_elem_length", 3.0) # Structuring element size
params.setValue("struc_elem_unit", "Thomson")
baseline.setParameters(params)
baseline.filterExperiment(exp)
```
### SpectraMerger
Merges consecutive similar spectra.
```python
merger = oms.SpectraMerger()
params = merger.getParameters()
params.setValue("mz_binning_width", 0.05) # Binning width (Da)
params.setValue("sort_blocks", "RT_ascending")
merger.setParameters(params)
merger.mergeSpectra(exp)
```
## Quality Control
### MzMLFileQuality
Analyzes mzML file quality.
```python
# Calculate basic QC metrics
def calculate_qc_metrics(exp):
metrics = {
'n_spectra': exp.getNrSpectra(),
'n_ms1': sum(1 for s in exp if s.getMSLevel() == 1),
'n_ms2': sum(1 for s in exp if s.getMSLevel() == 2),
'rt_range': (exp.getMinRT(), exp.getMaxRT()),
'mz_range': (exp.getMinMZ(), exp.getMaxMZ()),
}
# Calculate TIC
tics = []
for spectrum in exp:
if spectrum.getMSLevel() == 1:
mz, intensity = spectrum.get_peaks()
tics.append(sum(intensity))
metrics['median_tic'] = np.median(tics)
metrics['mean_tic'] = np.mean(tics)
return metrics
```
## FDR Control
### FalseDiscoveryRate
Estimates and controls false discovery rate.
```python
fdr = oms.FalseDiscoveryRate()
params = fdr.getParameters()
params.setValue("add_decoy_peptides", "false")
params.setValue("add_decoy_proteins", "false")
fdr.setParameters(params)
# Apply to identifications
fdr.apply(protein_ids, peptide_ids)
# Filter by FDR threshold
fdr_threshold = 0.01
filtered_peptides = [p for p in peptide_ids if p.getMetaValue("q-value") <= fdr_threshold]
```
## Algorithm Selection Guide
### When to Use Which Algorithm
**For Smoothing:**
- Use `GaussFilter` for general-purpose smoothing
- Use `SavitzkyGolayFilter` for preserving peak shapes
**For Peak Picking:**
- Use `PeakPickerHiRes` for high-resolution Orbitrap/FT-ICR data
- Use `PeakPickerWavelet` for lower-resolution TOF data
**For Feature Detection:**
- Use `FeatureFinderCentroided` for label-free proteomics (DDA)
- Use `FeatureFinderMultiplex` for SILAC/dimethyl labeling
- Use `FeatureFinderIdentification` when you have ID information
- Use `MRMFeatureFinderScoring` for targeted (MRM/SRM) experiments
**For Feature Linking:**
- Use `FeatureGroupingAlgorithmQT` for small-medium datasets (<10 samples)
- Use `FeatureGroupingAlgorithmKD` for large datasets (>10 samples)
## Parameter Tuning Tips
1. **S/N Thresholds**: Start with 1-3 for clean data, increase for noisy data
2. **m/z Tolerance**: Use 5-10 ppm for high-resolution instruments, 0.5-1 Da for low-res
3. **RT Tolerance**: Typically 30-60 seconds depending on chromatographic stability
4. **Peak Width**: Measure from real data - varies by instrument and gradient length
5. **Charge States**: Set based on expected analytes (1-2 for metabolites, 2-4 for peptides)
## Common Algorithm Workflows
### Complete Proteomics Workflow
```python
# 1. Load data
exp = oms.MSExperiment()
oms.MzMLFile().load("raw.mzML", exp)
# 2. Smooth
gauss = oms.GaussFilter()
gauss.filterExperiment(exp)
# 3. Peak picking
picker = oms.PeakPickerHiRes()
exp_centroid = oms.MSExperiment()
picker.pickExperiment(exp, exp_centroid)
# 4. Feature detection
ff = oms.FeatureFinderCentroided()
features = oms.FeatureMap()
ff.run(exp_centroid, features, oms.Param(), oms.FeatureMap())
# 5. Save results
oms.FeatureXMLFile().store("features.featureXML", features)
```
### Multi-Sample Quantification
```python
# Load multiple samples
feature_maps = []
for filename in ["sample1.mzML", "sample2.mzML", "sample3.mzML"]:
exp = oms.MSExperiment()
oms.MzMLFile().load(filename, exp)
# Process and detect features
features = detect_features(exp) # Your processing function
feature_maps.append(features)
# Align retention times
align_feature_maps(feature_maps) # Implement alignment
# Link features
grouper = oms.FeatureGroupingAlgorithmQT()
consensus_map = oms.ConsensusMap()
grouper.group(feature_maps, consensus_map)
# Export quantification matrix
export_quant_matrix(consensus_map)
```