Update examples

This commit is contained in:
Timothy Kassis
2026-01-05 13:49:00 -08:00
parent e268d8db9b
commit 15d9e4699a

View File

@@ -26,6 +26,9 @@ This document provides comprehensive, practical examples demonstrating how to co
18. [Experimental Physics & Data Analysis](#experimental-physics--data-analysis)
19. [Chemical Engineering & Process Optimization](#chemical-engineering--process-optimization)
20. [Scientific Illustration & Visual Communication](#scientific-illustration--visual-communication)
21. [Quantum Computing for Chemistry](#quantum-computing-for-chemistry)
22. [Research Grant Writing](#research-grant-writing)
23. [Flow Cytometry & Immunophenotyping](#flow-cytometry--immunophenotyping)
---
@@ -40,12 +43,16 @@ This document provides comprehensive, practical examples demonstrating how to co
- `pubchem-database` - Search compound libraries
- `rdkit` - Analyze molecular properties
- `datamol` - Generate analogs
- `medchem` - Medicinal chemistry filters
- `molfeat` - Molecular featurization
- `diffdock` - Molecular docking
- `alphafold-database` - Retrieve protein structure
- `pubmed-database` - Literature review
- `cosmic-database` - Query mutations
- `deepchem` - Property prediction
- `torchdrug` - Graph neural networks for molecules
- `scientific-visualization` - Create figures
- `clinical-reports` - Generate PDF reports
**Workflow**:
@@ -135,7 +142,10 @@ Expected Output:
- `clinicaltrials-database` - Check ongoing trials
- `fda-database` - Drug approvals and safety
- `networkx` - Network analysis
- `bioservices` - Biological database queries
- `literature-review` - Systematic review
- `openalex-database` - Academic literature search
- `biorxiv-database` - Preprint search
**Workflow**:
@@ -213,15 +223,17 @@ Expected Output:
**Skills Used**:
- `pysam` - Parse VCF files
- `ensembl-database` - Variant annotation
- `gget` - Unified gene/protein data retrieval
- `clinvar-database` - Clinical significance
- `cosmic-database` - Somatic mutations
- `gene-database` - Gene information
- `uniprot-database` - Protein impact
- `clinpgx-database` - Pharmacogenomics data
- `drugbank-database` - Drug-gene associations
- `clinicaltrials-database` - Matching trials
- `opentargets-database` - Target validation
- `pubmed-database` - Literature evidence
- `reportlab` - Generate clinical report
- `clinical-reports` - Generate clinical report PDF
**Workflow**:
@@ -297,7 +309,7 @@ Step 12: Generate clinical genomics report
- Clinical trial options with eligibility information
- Prognostic implications based on mutation profile
- References to guidelines (NCCN, ESMO, AMP/ASCO/CAP)
- Generate professional PDF using ReportLab
- Generate professional PDF using clinical-reports skill
Expected Output:
- Annotated variant list with clinical significance
@@ -318,11 +330,14 @@ Expected Output:
- `scanpy` - Clustering and visualization
- `scikit-learn` - Machine learning classification
- `gene-database` - Gene annotation
- `gget` - Gene data retrieval
- `reactome-database` - Pathway analysis
- `opentargets-database` - Drug targets
- `pubmed-database` - Literature validation
- `matplotlib` - Visualization
- `seaborn` - Heatmaps
- `plotly` - Interactive visualization
- `scikit-survival` - Survival analysis
**Workflow**:
@@ -412,11 +427,14 @@ Expected Output:
- `scvi-tools` - Batch correction and integration
- `cellxgene-census` - Reference data
- `gene-database` - Cell type markers
- `gget` - Gene data retrieval
- `anndata` - Data structure
- `arboreto` - Gene regulatory networks
- `pytorch-lightning` - Deep learning
- `matplotlib` - Visualization
- `plotly` - Interactive visualization
- `statistical-analysis` - Hypothesis testing
- `geniml` - Genomic ML embeddings
**Workflow**:
@@ -526,12 +544,14 @@ Expected Output:
- `pdb-database` - Experimental structures
- `uniprot-database` - Protein information
- `biopython` - Structure analysis
- `pyrosetta` - Protein design (if available)
- `esm` - Protein language models and embeddings
- `rdkit` - Chemical library generation
- `datamol` - Molecule manipulation
- `diffdock` - Molecular docking
- `zinc-database` - Screening library
- `deepchem` - Property prediction
- `pymol` - Visualization (external)
- `scientific-visualization` - Structure visualization
- `medchem` - Medicinal chemistry filters
**Workflow**:
@@ -638,7 +658,9 @@ Expected Output:
**Skills Used**:
- `rdkit` - Molecular descriptors
- `medchem` - Toxicophore detection
- `deepchem` - Toxicity prediction
- `pytdc` - Therapeutics data commons
- `chembl-database` - Toxicity data
- `pubchem-database` - Bioassay data
- `drugbank-database` - Known drug toxicities
@@ -646,6 +668,7 @@ Expected Output:
- `hmdb-database` - Metabolite prediction
- `scikit-learn` - Classification models
- `shap` - Model interpretability
- `clinical-reports` - Safety assessment reports
**Workflow**:
@@ -769,12 +792,15 @@ Expected Output:
- `clinicaltrials-database` - Trial registry
- `fda-database` - Drug approvals
- `pubmed-database` - Published results
- `openalex-database` - Academic literature
- `drugbank-database` - Approved drugs
- `opentargets-database` - Target validation
- `polars` - Data manipulation
- `matplotlib` - Visualization
- `seaborn` - Statistical plots
- `reportlab` - Report generation
- `plotly` - Interactive plots
- `clinical-reports` - Report generation
- `market-research-reports` - Competitive intelligence
**Workflow**:
@@ -872,7 +898,7 @@ Step 12: Generate competitive intelligence report
* Differentiation strategies
* Partnership opportunities
* Regulatory pathway considerations
- Export as professional PDF with citations and data tables
- Export as professional PDF with citations and data tables using clinical-reports skill
Expected Output:
- Comprehensive trial database for indication
@@ -894,14 +920,17 @@ Expected Output:
**Skills Used**:
- `pydeseq2` - RNA-seq analysis
- `pyopenms` - Mass spectrometry
- `matchms` - Mass spectra matching
- `hmdb-database` - Metabolite identification
- `metabolomics-workbench-database` - Public datasets
- `kegg-database` - Pathway mapping
- `reactome-database` - Pathway analysis
- `string-database` - Protein interactions
- `cobrapy` - Constraint-based metabolic modeling
- `statsmodels` - Multi-omics correlation
- `networkx` - Network analysis
- `pymc` - Bayesian modeling
- `plotly` - Interactive network visualization
**Workflow**:
@@ -1011,15 +1040,16 @@ Expected Output:
**Objective**: Discover novel solid electrolyte materials for lithium-ion batteries using computational screening.
**Skills Used**:
- `pymatgen` - Materials analysis
- `matminer` - Feature engineering
- `pymatgen` - Materials analysis and feature engineering
- `scikit-learn` - Machine learning
- `pymoo` - Multi-objective optimization
- `ase` - Atomic simulation
- `sympy` - Symbolic math
- `vaex` - Large dataset handling
- `dask` - Parallel computing
- `matplotlib` - Visualization
- `plotly` - Interactive visualization
- `scientific-writing` - Report generation
- `scientific-visualization` - Publication figures
**Workflow**:
@@ -1052,8 +1082,8 @@ Step 4: Calculate material properties with Pymatgen
- Ionic radii and bond lengths
- Coordination environments
Step 5: Feature engineering with matminer
- Calculate compositional features:
Step 5: Feature engineering with Pymatgen
- Calculate compositional features using Pymatgen's featurizers:
* Elemental property statistics (electronegativity, ionic radius)
* Valence electron concentrations
* Stoichiometric attributes
@@ -1095,7 +1125,7 @@ Step 9: Analyze Pareto optimal materials
Step 10: Validate predictions with DFT calculations
- Select top 10 candidates for detailed study
- Set up DFT calculations (VASP-like, if available via ASE)
- Set up DFT calculations using Pymatgen's interface
- Calculate:
* Accurate formation energies
* Li⁺ migration barriers (NEB calculations)
@@ -1142,13 +1172,14 @@ Expected Output:
**Skills Used**:
- `histolab` - Whole slide image processing
- `pathml` - Computational pathology
- `pytorch-lightning` - Deep learning
- `torchvision` - Image models
- `pytorch-lightning` - Deep learning and image models
- `scikit-learn` - Model evaluation
- `pydicom` - DICOM handling
- `omero-integration` - Image management
- `matplotlib` - Visualization
- `plotly` - Interactive visualization
- `shap` - Model interpretability
- `clinical-reports` - Clinical validation reports
**Workflow**:
@@ -1264,11 +1295,14 @@ Expected Output:
- `pylabrobot` - Lab automation
- `opentrons-integration` - Opentrons protocol
- `benchling-integration` - Sample tracking
- `labarchive-integration` - Electronic lab notebook
- `protocolsio-integration` - Protocol documentation
- `simpy` - Process simulation
- `polars` - Data processing
- `matplotlib` - Plate visualization
- `reportlab` - Report generation
- `plotly` - Interactive plate heatmaps
- `rdkit` - PAINS filtering for hits
- `clinical-reports` - Screening report generation
**Workflow**:
@@ -1406,11 +1440,14 @@ Expected Output:
- `gwas-database` - Public GWAS data
- `ensembl-database` - Plant genomics
- `gene-database` - Gene annotation
- `scanpy` - Population structure (adapted for genetic data)
- `gget` - Gene data retrieval
- `scanpy` - Population structure analysis
- `scikit-learn` - PCA and clustering
- `statsmodels` - Association testing
- `statistical-analysis` - Hypothesis testing
- `matplotlib` - Manhattan plots
- `seaborn` - Visualization
- `plotly` - Interactive visualizations
**Workflow**:
@@ -1535,14 +1572,16 @@ Expected Output:
**Skills Used**:
- `neurokit2` - Neurophysiological signal processing
- `nilearn` (external) - Neuroimaging analysis
- `neuropixels-analysis` - Neural data analysis
- `scikit-learn` - Classification and clustering
- `networkx` - Graph theory analysis
- `statsmodels` - Statistical testing
- `statistical-analysis` - Hypothesis testing
- `torch_geometric` - Graph neural networks
- `pymc` - Bayesian modeling
- `matplotlib` - Brain visualization
- `seaborn` - Connectivity matrices
- `plotly` - Interactive brain networks
**Workflow**:
@@ -1675,13 +1714,16 @@ Expected Output:
- `biopython` - Sequence processing
- `pysam` - BAM file handling
- `ena-database` - Sequence data
- `geo-database` - Public datasets
- `uniprot-database` - Protein annotation
- `kegg-database` - Pathway analysis
- `etetoolkit` - Phylogenetic trees
- `scikit-bio` - Microbial ecology
- `networkx` - Co-occurrence networks
- `statsmodels` - Diversity statistics
- `statistical-analysis` - Hypothesis testing
- `matplotlib` - Visualization
- `plotly` - Interactive plots
**Workflow**:
@@ -1826,7 +1868,10 @@ Expected Output:
- `scikit-learn` - Resistance prediction
- `networkx` - Transmission networks
- `statsmodels` - Trend analysis
- `statistical-analysis` - Hypothesis testing
- `matplotlib` - Epidemiological plots
- `plotly` - Interactive dashboards
- `clinical-reports` - Surveillance reports
**Workflow**:
@@ -1969,6 +2014,7 @@ Expected Output:
- `pydeseq2` - RNA-seq DE analysis
- `pysam` - Variant calling
- `ensembl-database` - Gene annotation
- `gget` - Gene data retrieval
- `cosmic-database` - Cancer mutations
- `string-database` - Protein interactions
- `reactome-database` - Pathway analysis
@@ -1976,8 +2022,11 @@ Expected Output:
- `scikit-learn` - Clustering and classification
- `torch_geometric` - Graph neural networks
- `umap-learn` - Dimensionality reduction
- `statsmodels` - Survival analysis
- `scikit-survival` - Survival analysis
- `statsmodels` - Statistical modeling
- `pymoo` - Multi-objective optimization
- `pyhealth` - Healthcare ML models
- `clinical-reports` - Integrative genomics report
**Workflow**:
@@ -2147,7 +2196,7 @@ Expected Output:
**Skills Used**:
- `astropy` - Units and constants
- `sympy` - Symbolic mathematics
- `scipy` - Statistical analysis
- `statistical-analysis` - Statistical analysis
- `scikit-learn` - Classification
- `stable-baselines3` - Reinforcement learning for optimization
- `matplotlib` - Visualization
@@ -2155,6 +2204,7 @@ Expected Output:
- `statsmodels` - Hypothesis testing
- `dask` - Large-scale data processing
- `vaex` - Out-of-core dataframes
- `plotly` - Interactive visualization
**Workflow**:
@@ -2296,14 +2346,17 @@ Expected Output:
**Skills Used**:
- `sympy` - Symbolic equations and reaction kinetics
- `scipy` - Numerical integration and optimization
- `statistical-analysis` - Numerical analysis
- `pymoo` - Multi-objective optimization
- `simpy` - Process simulation
- `pymc` - Bayesian parameter estimation
- `scikit-learn` - Process modeling
- `stable-baselines3` - Real-time control optimization
- `matplotlib` - Process diagrams
- `reportlab` - Engineering reports
- `plotly` - Interactive process visualization
- `fluidsim` - Fluid dynamics simulation
- `scientific-writing` - Engineering reports
- `document-skills` - Technical documentation
**Workflow**:
@@ -2500,9 +2553,14 @@ Expected Output:
**Skills Used**:
- `generate-image` - AI image generation and editing
- `matplotlib` - Data visualization
- `plotly` - Interactive visualization
- `scientific-visualization` - Best practices
- `scientific-schematics` - Scientific diagrams
- `scientific-writing` - Figure caption creation
- `reportlab` - PDF report generation
- `scientific-slides` - Presentation materials
- `latex-posters` - Conference posters
- `pptx-posters` - PowerPoint posters
- `document-skills` - PDF report generation
**Workflow**:
@@ -2618,7 +2676,7 @@ Step 12: Assemble final publication package
- Organize all figures in publication order
- Create high-resolution exports (300+ DPI for print)
- Generate both RGB (web) and CMYK (print) versions
- Compile into PDF using ReportLab:
- Compile into PDF using document-skills:
* Title page with graphical abstract
* All figures with captions
* Supplementary figures section
@@ -2637,6 +2695,332 @@ Expected Output:
---
## Quantum Computing for Chemistry
### Example 21: Variational Quantum Eigensolver for Molecular Ground States
**Objective**: Use quantum computing to calculate molecular electronic structure and ground state energies for drug design applications.
**Skills Used**:
- `qiskit` - IBM quantum computing framework
- `pennylane` - Quantum machine learning
- `cirq` - Google quantum circuits
- `qutip` - Quantum dynamics simulation
- `rdkit` - Molecular structure input
- `sympy` - Symbolic Hamiltonian construction
- `matplotlib` - Energy landscape visualization
- `scientific-visualization` - Publication figures
- `scientific-writing` - Quantum chemistry reports
**Workflow**:
```bash
Step 1: Define molecular system
- Load molecular structure with RDKit (small drug molecule)
- Extract atomic coordinates and nuclear charges
- Define basis set (STO-3G, 6-31G for small molecules)
- Calculate number of qubits needed (2 qubits per orbital)
Step 2: Construct molecular Hamiltonian
- Use Qiskit Nature to generate fermionic Hamiltonian
- Apply Jordan-Wigner transformation to qubit Hamiltonian
- Use SymPy to symbolically verify Hamiltonian terms
- Calculate number of Pauli terms
Step 3: Design variational ansatz with Qiskit
- Choose ansatz type: UCCSD, hardware-efficient, or custom
- Define circuit depth and entanglement structure
- Calculate circuit parameters (variational angles)
- Estimate circuit resources (gates, depth)
Step 4: Implement VQE algorithm
- Initialize variational parameters randomly
- Define cost function: <ψ(θ)|H|ψ(θ)>
- Choose classical optimizer (COBYLA, SPSA, L-BFGS-B)
- Set convergence criteria
Step 5: Run quantum simulation with PennyLane
- Configure quantum device (simulator or real hardware)
- Execute variational circuits
- Measure expectation values of Hamiltonian terms
- Update parameters iteratively
Step 6: Error mitigation
- Implement readout error mitigation
- Apply zero-noise extrapolation
- Use measurement error correction
- Estimate uncertainty in energy values
Step 7: Quantum dynamics with QuTiP
- Simulate molecular dynamics on quantum computer
- Calculate time evolution of molecular system
- Study non-adiabatic transitions
- Visualize wavefunction dynamics
Step 8: Compare with classical methods
- Run classical HF and DFT calculations for reference
- Compare VQE results with CCSD(T) (gold standard)
- Analyze quantum advantage for this system
- Quantify accuracy vs computational cost
Step 9: Scale to larger molecules
- Design circuits for larger drug candidates
- Estimate resources for pharmaceutical applications
- Identify molecules where quantum advantage is expected
- Plan for near-term quantum hardware capabilities
Step 10: Generate quantum chemistry report
- Energy convergence plots
- Circuit diagrams and ansatz visualizations
- Comparison with classical methods
- Resource estimates for target molecules
- Discussion of quantum advantage timeline
- Publication-quality figures
- Export comprehensive report
Expected Output:
- Molecular ground state energies from VQE
- Optimized variational circuits
- Comparison with classical chemistry methods
- Resource estimates for drug molecules
- Quantum chemistry analysis report
```
---
## Research Grant Writing
### Example 22: NIH R01 Grant Proposal Development
**Objective**: Develop a comprehensive research grant proposal with literature review, specific aims, and budget justification.
**Skills Used**:
- `research-grants` - Grant writing templates and guidelines
- `literature-review` - Systematic literature analysis
- `pubmed-database` - Literature search
- `openalex-database` - Citation analysis
- `clinicaltrials-database` - Preliminary data context
- `hypothesis-generation` - Scientific hypothesis development
- `scientific-writing` - Technical writing
- `scientific-critical-thinking` - Research design
- `citation-management` - Reference formatting
- `document-skills` - PDF generation
**Workflow**:
```bash
Step 1: Define research question and significance
- Use hypothesis-generation skill to refine research questions
- Identify knowledge gaps in the field
- Articulate significance and innovation
- Define measurable outcomes
Step 2: Comprehensive literature review
- Search PubMed for relevant publications (last 10 years)
- Query OpenAlex for citation networks
- Identify key papers and review articles
- Use literature-review skill to synthesize findings
- Identify gaps that proposal will address
Step 3: Develop specific aims
- Aim 1: Mechanistic studies (hypothesis-driven)
- Aim 2: Translational applications
- Aim 3: Validation and clinical relevance
- Ensure aims are interdependent but not contingent
- Define success criteria for each aim
Step 4: Design research approach
- Use scientific-critical-thinking for experimental design
- Define methods for each specific aim
- Include positive and negative controls
- Plan statistical analysis approach
- Identify potential pitfalls and alternatives
Step 5: Preliminary data compilation
- Gather existing data supporting hypothesis
- Search ClinicalTrials.gov for relevant prior work
- Create figures showing preliminary results
- Quantify feasibility evidence
Step 6: Innovation and significance sections
- Articulate what is novel about approach
- Compare to existing methods/knowledge
- Explain expected impact on field
- Address NIH mission alignment
Step 7: Timeline and milestones
- Create Gantt chart for 5-year project
- Define quarterly milestones
- Identify go/no-go decision points
- Plan for personnel and resource allocation
Step 8: Budget development
- Calculate personnel costs (PI, postdocs, students)
- Equipment and supplies estimates
- Core facility usage costs
- Travel and publication costs
- Indirect cost calculation
Step 9: Rigor and reproducibility
- Address biological variables (sex, age, strain)
- Statistical power calculations
- Data management and sharing plan
- Authentication of key resources
Step 10: Format and compile
- Use research-grants templates for NIH format
- Apply citation-management for references
- Create biosketch and facilities sections
- Generate PDF with proper formatting
- Check page limits and formatting requirements
Step 11: Review and revision
- Use peer-review skill principles for self-assessment
- Check for logical flow and clarity
- Verify alignment with FOA requirements
- Ensure responsive to review criteria
Step 12: Final deliverables
- Specific Aims page (1 page)
- Research Strategy (12 pages)
- Bibliography
- Budget and justification
- Biosketches
- Letters of support
- Data management plan
- Human subjects/vertebrate animals sections (if applicable)
Expected Output:
- Complete NIH R01 grant proposal
- Literature review summary
- Budget spreadsheet with justification
- Timeline and milestone chart
- All required supplementary documents
- Properly formatted PDF ready for submission
```
---
## Flow Cytometry & Immunophenotyping
### Example 23: Multi-Parameter Flow Cytometry Analysis Pipeline
**Objective**: Analyze high-dimensional flow cytometry data to characterize immune cell populations in clinical samples.
**Skills Used**:
- `flowio` - FCS file parsing
- `scanpy` - High-dimensional analysis
- `scikit-learn` - Clustering and classification
- `umap-learn` - Dimensionality reduction
- `statistical-analysis` - Population statistics
- `matplotlib` - Flow cytometry plots
- `plotly` - Interactive gating
- `clinical-reports` - Clinical flow reports
- `exploratory-data-analysis` - Data exploration
**Workflow**:
```bash
Step 1: Load and parse FCS files
- Use flowio to read FCS 3.0/3.1 files
- Extract channel names and metadata
- Load compensation matrix from file
- Parse keywords (patient ID, tube, date)
Step 2: Quality control
- Check for acquisition anomalies (time vs events)
- Identify clogging or fluidics issues
- Remove doublets (FSC-A vs FSC-H)
- Gate viable cells (exclude debris)
- Document QC metrics per sample
Step 3: Compensation and transformation
- Apply compensation matrix
- Transform data (biexponential/logicle)
- Verify compensation with single-stain controls
- Visualize spillover reduction
Step 4: Traditional gating strategy
- Sequential manual gating approach:
* Lymphocytes (FSC vs SSC)
* Single cells (FSC-A vs FSC-H)
* Live cells (viability dye negative)
* CD3+ T cells, CD19+ B cells, etc.
- Calculate population frequencies
- Export gated populations
Step 5: High-dimensional analysis with Scanpy
- Convert flow data to AnnData format
- Apply variance-stabilizing transformation
- Calculate highly variable markers
- Build neighbor graph
Step 6: Dimensionality reduction
- Run UMAP with umap-learn for visualization
- Optimize UMAP parameters (n_neighbors, min_dist)
- Create 2D embeddings colored by:
* Marker expression
* Sample/patient
* Clinical group
Step 7: Automated clustering
- Apply Leiden or FlowSOM clustering
- Determine optimal cluster resolution
- Assign cell type labels based on marker profiles
- Validate clusters against manual gating
Step 8: Differential abundance analysis
- Compare population frequencies between groups
- Use statistical-analysis for hypothesis testing
- Calculate fold changes and p-values
- Apply multiple testing correction
- Identify significantly altered populations
Step 9: Biomarker discovery
- Train classifiers to predict clinical outcome
- Use scikit-learn Random Forest or SVM
- Calculate feature importance (which populations matter)
- Cross-validate prediction accuracy
- Identify candidate biomarkers
Step 10: Quality metrics and batch effects
- Calculate CV for control samples
- Detect batch effects across acquisition dates
- Apply batch correction if needed
- Generate Levey-Jennings plots for QC
Step 11: Visualization suite
- Traditional flow plots:
* Bivariate dot plots with quadrant gates
* Histogram overlays
* Contour plots
- High-dimensional plots:
* UMAP colored by population
* Heatmaps of marker expression
* Violin plots for marker distributions
- Interactive plots with Plotly
Step 12: Generate clinical flow cytometry report
- Sample information and QC summary
- Gating strategy diagrams
- Population frequency tables
- Reference range comparisons
- Statistical comparisons between groups
- Interpretation and clinical significance
- Export as PDF for clinical review
Expected Output:
- Parsed and compensated flow cytometry data
- Traditional and automated gating results
- High-dimensional clustering and UMAP
- Differential abundance statistics
- Biomarker candidates for clinical outcome
- Publication-quality flow plots
- Clinical flow cytometry report
```
---
## Summary
These examples demonstrate:
@@ -2647,6 +3031,44 @@ These examples demonstrate:
4. **End-to-end workflows**: From data acquisition to publication-ready reports
5. **Best practices**: QC, statistical rigor, visualization, interpretation, and documentation
### Skills Coverage Summary
The examples in this document cover the following skill categories:
**Databases & Data Sources:**
- Biological: `chembl-database`, `pubchem-database`, `drugbank-database`, `uniprot-database`, `gene-database`, `ensembl-database`, `clinvar-database`, `cosmic-database`, `string-database`, `kegg-database`, `reactome-database`, `hmdb-database`, `pdb-database`, `alphafold-database`, `zinc-database`, `gwas-database`, `geo-database`, `ena-database`, `cellxgene-census`, `metabolomics-workbench-database`, `brenda-database`, `clinpgx-database`
- Clinical: `clinicaltrials-database`, `fda-database`
- Literature: `pubmed-database`, `openalex-database`, `biorxiv-database`
**Analysis Packages:**
- Chemistry: `rdkit`, `datamol`, `medchem`, `molfeat`, `deepchem`, `torchdrug`, `pytdc`, `diffdock`, `pyopenms`, `matchms`, `cobrapy`
- Genomics: `biopython`, `pysam`, `pydeseq2`, `scanpy`, `scvi-tools`, `anndata`, `gget`, `geniml`, `deeptools`, `etetoolkit`, `scikit-bio`
- Proteins: `esm`, `bioservices`
- Machine Learning: `scikit-learn`, `pytorch-lightning`, `torch_geometric`, `transformers`, `stable-baselines3`, `shap`
- Statistics: `statsmodels`, `statistical-analysis`, `pymc`, `scikit-survival`
- Visualization: `matplotlib`, `seaborn`, `plotly`, `scientific-visualization`
- Data Processing: `polars`, `dask`, `vaex`, `networkx`
- Materials: `pymatgen`
- Physics: `astropy`, `sympy`, `fluidsim`
- Quantum: `qiskit`, `pennylane`, `cirq`, `qutip`
- Neuroscience: `neurokit2`, `neuropixels-analysis`
- Pathology: `histolab`, `pathml`, `pydicom`
- Flow Cytometry: `flowio`
- Dimensionality Reduction: `umap-learn`, `arboreto`
- Lab Automation: `pylabrobot`, `opentrons-integration`, `benchling-integration`, `labarchive-integration`, `protocolsio-integration`
- Simulation: `simpy`, `pymoo`
**Writing & Reporting:**
- `scientific-writing`, `scientific-visualization`, `scientific-schematics`, `scientific-slides`
- `clinical-reports`, `clinical-decision-support`
- `literature-review`, `hypothesis-generation`, `scientific-critical-thinking`
- `research-grants`, `peer-review`
- `document-skills`, `latex-posters`, `pptx-posters`
- `citation-management`, `market-research-reports`
**Image & Media:**
- `generate-image`, `omero-integration`
### How to Use These Examples
1. **Adapt to your needs**: Modify parameters, datasets, and objectives for your specific research question